Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
JAMA ; 329(12): 980-989, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36826834

RESUMO

Importance: Near normalization of glucose levels instituted immediately after diagnosis of type 1 diabetes has been postulated to preserve pancreatic beta cell function by reducing glucotoxicity. Previous studies have been hampered by an inability to achieve tight glycemic goals. Objective: To determine the effectiveness of intensive diabetes management to achieve near normalization of glucose levels on preservation of pancreatic beta cell function in youth with newly diagnosed type 1 diabetes. Design, Setting, and Participants: This randomized, double-blind, clinical trial was conducted at 6 centers in the US (randomizations from July 20, 2020, to October 13, 2021; follow-up completed September 15, 2022) and included youths with newly diagnosed type 1 diabetes aged 7 to 17 years. Interventions: Random assignment to intensive diabetes management, which included use of an automated insulin delivery system (n = 61), or standard care, which included use of a continuous glucose monitor (n = 52), as part of a factorial design in which participants weighing 30 kg or more also were assigned to receive either oral verapamil or placebo. Main Outcomes and Measures: The primary outcome was mixed-meal tolerance test-stimulated C-peptide area under the curve (a measure of pancreatic beta cell function) 52 weeks from diagnosis. Results: Among 113 participants (mean [SD] age, 11.8 [2.8] years; 49 females [43%]; mean [SD] time from diagnosis to randomization, 24 [5] days), 108 (96%) completed the trial. The mean C-peptide area under the curve decreased from 0.57 pmol/mL at baseline to 0.45 pmol/mL at 52 weeks in the intensive management group, and from 0.60 to 0.50 pmol/mL in the standard care group (treatment group difference, -0.01 [95% CI, -0.11 to 0.10]; P = .89). The mean time in the target range of 70 to 180 mg/dL, measured with continuous glucose monitoring, at 52 weeks was 78% in the intensive management group vs 64% in the standard care group (adjusted difference, 16% [95% CI, 10% to 22%]). One severe hypoglycemia event and 1 diabetic ketoacidosis event occurred in each group. Conclusions and Relevance: In youths with newly diagnosed type 1 diabetes, intensive diabetes management, which included automated insulin delivery, achieved excellent glucose control but did not affect the decline in pancreatic C-peptide secretion at 52 weeks. Trial Registration: ClinicalTrials.gov Identifier: NCT04233034.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Feminino , Adolescente , Humanos , Criança , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/administração & dosagem , Glicemia/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Peptídeo C/farmacologia , Peptídeo C/uso terapêutico , Método Duplo-Cego , Controle Glicêmico , Automonitorização da Glicemia , Hemoglobinas Glicadas , Insulina/efeitos adversos , Insulina/administração & dosagem
2.
JAMA ; 329(12): 990-999, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36826844

RESUMO

Importance: In preclinical studies, thioredoxin-interacting protein overexpression induces pancreatic beta cell apoptosis and is involved in glucotoxicity-induced beta cell death. Calcium channel blockers reduce these effects and may be beneficial to beta cell preservation in type 1 diabetes. Objective: To determine the effect of verapamil on pancreatic beta cell function in children and adolescents with newly diagnosed type 1 diabetes. Design, Setting, and Participants: This double-blind, randomized clinical trial including children and adolescents aged 7 to 17 years with newly diagnosed type 1 diabetes who weighed 30 kg or greater was conducted at 6 centers in the US (randomized participants between July 20, 2020, and October 13, 2021) and follow-up was completed on September 15, 2022. Interventions: Participants were randomly assigned 1:1 to once-daily oral verapamil (n = 47) or placebo (n = 41) as part of a factorial design in which participants also were assigned to receive either intensive diabetes management or standard diabetes care. Main Outcomes and Measures: The primary outcome was area under the curve values for C-peptide level (a measure of pancreatic beta cell function) stimulated by a mixed-meal tolerance test at 52 weeks from diagnosis of type 1 diabetes. Results: Among 88 participants (mean age, 12.7 [SD, 2.4] years; 36 were female [41%]; and the mean time from diagnosis to randomization was 24 [SD, 4] days), 83 (94%) completed the trial. In the verapamil group, the mean C-peptide area under the curve was 0.66 pmol/mL at baseline and 0.65 pmol/mL at 52 weeks compared with 0.60 pmol/mL at baseline and 0.44 pmol/mL at 52 weeks in the placebo group (adjusted between-group difference, 0.14 pmol/mL [95% CI, 0.01 to 0.27 pmol/mL]; P = .04). This equates to a 30% higher C-peptide level at 52 weeks with verapamil. The percentage of participants with a 52-week peak C-peptide level of 0.2 pmol/mL or greater was 95% (41 of 43 participants) in the verapamil group vs 71% (27 of 38 participants) in the placebo group. At 52 weeks, hemoglobin A1c was 6.6% in the verapamil group vs 6.9% in the placebo group (adjusted between-group difference, -0.3% [95% CI, -1.0% to 0.4%]). Eight participants (17%) in the verapamil group and 8 participants (20%) in the placebo group had a nonserious adverse event considered to be related to treatment. Conclusions and Relevance: In children and adolescents with newly diagnosed type 1 diabetes, verapamil partially preserved stimulated C-peptide secretion at 52 weeks from diagnosis compared with placebo. Further studies are needed to determine the longitudinal durability of C-peptide improvement and the optimal length of therapy. Trial Registration: ClinicalTrials.gov Identifier: NCT04233034.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Adolescente , Humanos , Criança , Feminino , Masculino , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Peptídeo C/metabolismo , Peptídeo C/farmacologia , Peptídeo C/uso terapêutico , Método Duplo-Cego , Verapamil/efeitos adversos , Células Secretoras de Insulina/efeitos dos fármacos
3.
Glia ; 69(5): 1184-1203, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33368703

RESUMO

Primary cilia are small microtubule-based organelles capable of transducing signals from growth factor receptors embedded in the cilia membrane. Developmentally, oligodendrocyte progenitor cells (OPCs) express genes associated with primary cilia assembly, disassembly, and signaling, however, the importance of primary cilia for adult myelination has not been explored. We show that OPCs are ciliated in vitro and in vivo, and that they disassemble their primary cilia as they progress through the cell cycle. OPC primary cilia are also disassembled as OPCs differentiate into oligodendrocytes. When kinesin family member 3a (Kif3a), a gene critical for primary cilium assembly, was conditionally deleted from adult OPCs in vivo (Pdgfrα-CreER™:: Kif3a fl/fl transgenic mice), OPCs failed to assemble primary cilia. Kif3a-deletion was also associated with reduced OPC proliferation and oligodendrogenesis in the corpus callosum and motor cortex and a progressive impairment of fine motor coordination.


Assuntos
Células-Tronco Adultas , Células Precursoras de Oligodendrócitos , Animais , Diferenciação Celular , Cílios , Cinesinas/genética , Camundongos , Camundongos Transgênicos , Oligodendroglia
4.
Glia ; 68(2): 376-392, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31605513

RESUMO

Throughout life, oligodendrocyte progenitor cells (OPCs) proliferate and differentiate into myelinating oligodendrocytes. OPCs express cell surface receptors and channels that allow them to detect and respond to neuronal activity, including voltage-gated calcium channel (VGCC)s. The major L-type VGCC expressed by developmental OPCs, CaV1.2, regulates their differentiation. However, it is unclear whether CaV1.2 similarly influences OPC behavior in the healthy adult central nervous system (CNS). To examine the role of CaV1.2 in adulthood, we conditionally deleted this channel from OPCs by administering tamoxifen to P60 Cacna1c fl/fl (control) and Pdgfrα-CreER:: Cacna1c fl/fl (CaV1.2-deleted) mice. Whole cell patch clamp analysis revealed that CaV1.2 deletion reduced L-type voltage-gated calcium entry into adult OPCs by ~60%, confirming that it remains the major L-type VGCC expressed by OPCs in adulthood. The conditional deletion of CaV1.2 from adult OPCs significantly increased their proliferation but did not affect the number of new oligodendrocytes produced or influence the length or number of internodes they elaborated. Unexpectedly, CaV1.2 deletion resulted in the dramatic loss of OPCs from the corpus callosum, such that 7 days after tamoxifen administration CaV1.2-deleted mice had an OPC density ~42% that of control mice. OPC density recovered within 2 weeks of CaV1.2 deletion, as the lost OPCs were replaced by surviving CaV1.2-deleted OPCs. As OPC density was not affected in the motor cortex or spinal cord, we conclude that calcium entry through CaV1.2 is a critical survival signal for a subpopulation of callosal OPCs but not for all OPCs in the mature CNS.


Assuntos
Cálcio/metabolismo , Córtex Motor/metabolismo , Células Precursoras de Oligodendrócitos/citologia , Oligodendroglia/metabolismo , Células-Tronco Adultas/citologia , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Camundongos , Camundongos Transgênicos , Células-Tronco/fisiologia
5.
J Clin Transl Endocrinol ; 36: 100352, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38860154

RESUMO

Objectives: To report the safety and side effects associated with taking verapamil for beta-cell preservation in children with newly-diagnosed T1D. Research Design and Methods: Eighty-eight participants aged 8.5 to 17.9 years weighing ≥ 30 kg were randomly assigned to verapamil (N = 47) or placebo (N = 41) within 31 days of T1D diagnosis and followed for 12 months from diagnosis, main CLVer study. Drug dosing was weight-based with incremental increases to full dosage. Side effect monitoring included serial measurements of pulse, blood pressure, liver enzymes, and electrocardiograms (ECGs). At study end, participants were enrolled in an observational extension study (CLVerEx), which is ongoing. No study drug is provided during the extension, but participants may use verapamil if prescribed by their diabetes care team. Results: Overall rates of adverse events were low and comparable between verapamil and placebo groups. There was no difference in the frequency of liver function abnormalities. Three CLVer participants reduced or discontinued medication due to asymptomatic ECG changes. One CLVerEx participant (18 years old), treated with placebo during CLVer, who had not had a monitoring ECG, experienced complete AV block with a severe hypotensive episode 6 weeks after reaching his maximum verapamil dose following an inadvertent double dose on the day of the event. Conclusions: The use of verapamil in youth newly-diagnosed with T1D appears generally safe and well tolerated with appropriate monitoring. We strongly recommend monitoring for potential side effects including an ECG at screening and an additional ECG once full dosage is reached.ClinicalTrials.gov number: NCT04233034.

6.
Pathology ; 36(1): 69-76, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14757560

RESUMO

AIMS: An important consideration in the design of a tumour vaccine is the ability of tumour-specific cytotoxic T lymphocytes (CTL) to recognise unmanipulated tumour cells in vivo. To determine whether B-CLL might use an escape strategy, the current studies compared B-CLL and normal B cell MHC class I expression. METHODS: Flow cytometry, TAP allele PCR and MHC class I PCR were used. RESULTS: While baseline expression of MHC class I did not differ, upregulation of MHC class I expression by B-CLL cells in response to IFN-gamma was reduced. No deletions or mutations of TAP 1 or 2 genes were detected. B-CLL cells upregulated TAP protein expression in response to IFN-gamma. Responsiveness of B-CLL MHC class I mRNA to IFN-gamma was not impaired. CONCLUSIONS: The data suggest that MHC class I molecules might be less stable at the cell surface in B-CLL than normal B cells, as a result of the described release of beta(2)m and beta(2)m-free class I heavy chains from the membrane. This relative MHC class I expression defect of B-CLL cells may reduce their susceptibility to CTL lysis in response to immunotherapeutic approaches.


Assuntos
Antígenos de Histocompatibilidade Classe I/biossíntese , Antígenos de Histocompatibilidade Classe I/imunologia , Interferon gama/farmacologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Membro 3 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/biossíntese , Transportadores de Cassetes de Ligação de ATP/imunologia , Idoso , Apresentação de Antígeno/imunologia , Citometria de Fluxo , Antígenos de Histocompatibilidade Classe I/efeitos dos fármacos , Humanos , Interferon gama/imunologia , Leucemia Linfocítica Crônica de Células B/imunologia , Reação em Cadeia da Polimerase
7.
J Chem Neuroanat ; 43(1): 52-63, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22026960

RESUMO

GLAST (EAAT1) is an abundant glial glutamate transporter in the mammalian brain. It plays important roles in terminating excitatory transmission in grey matter, as well as pathophysiological roles, including protecting white matter from excitotoxic injury. In normal brain, alternative splicing of GLAST has been described: GLAST1a and GLAST1b arise from the splicing out of exons 3 and 9, respectively. This study describes the isolation of a novel cDNA clone from neonatal hypoxic pig brain, referred to as GLAST1c, where exons 5 and 6 are skipped. GLAST1c encodes a protein of 430 amino acids. RT-PCR analysis showed that GLAST1c mRNA was readily detectable in control and hypoxic pig cortex, as well as in various brain regions of rat (cortex, mid, hind and cerebellum), and human cortex, retina and optic nerve. We have raised antibodies that selectively recognize GLAST1c and demonstrate expression of this novel splice variant in astrocytes and oligodendrocytes in rat brain, pig brain and human brain, including grey and white matter. Similarly expression of GLAST1c was observed in primary astrocyte cultures and in cultured oligodendrocytes. In unstimulated astrocytes GLAST1c exhibited an intracellular peri-nuclear distribution similar to that observed when GFP-tagged GLAST1c was transfected into COS 7 cells. In astrocytes this protein rapidly redistributed to the surface upon stimulation of protein kinase with phorbol esters. We conclude that GLAST1c may represent an astrocyte and oligodendrocyte glutamate transporter, though this could not be formally validated by D-aspartate uptake studies, due to the low transfection efficiency of constructs into COS 7 cells.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Transportador 1 de Aminoácido Excitatório/metabolismo , Oligodendroglia/metabolismo , Animais , Astrócitos/citologia , Encéfalo/citologia , Células Cultivadas , Clonagem Molecular , Transportador 1 de Aminoácido Excitatório/genética , Humanos , Neurônios/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA