Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
MAGMA ; 36(5): 823-836, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36847989

RESUMO

OBJECTIVE: The Fluid And White matter Suppression (FLAWS) MRI sequence provides multiple T1-weighted contrasts of the brain in a single acquisition. However, the FLAWS acquisition time is approximately 8 min with a standard GRAPPA 3 acceleration factor at 3 T. This study aims at reducing the FLAWS acquisition time by providing a new sequence optimization based on a Cartesian phyllotaxis k-space undersampling and a compressed sensing (CS) reconstruction. This study also aims at showing that T1 mapping can be performed with FLAWS at 3 T. MATERIALS AND METHODS: The CS FLAWS parameters were determined using a method based on a profit function maximization under constraints. The FLAWS optimization and T1 mapping were assessed with in-silico, in-vitro and in-vivo (10 healthy volunteers) experiments conducted at 3 T. RESULTS: In-silico, in-vitro and in-vivo experiments showed that the proposed CS FLAWS optimization allows the acquisition time of a 1 mm-isotropic full-brain scan to be reduced from [Formula: see text] to [Formula: see text] without decreasing image quality. In addition, these experiments demonstrate that T1 mapping can be performed with FLAWS at 3 T. DISCUSSION: The results obtained in this study suggest that the recent advances in FLAWS imaging allow to perform multiple T1-weighted contrast imaging and T1 mapping in a single [Formula: see text] sequence acquisition.


Assuntos
Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Neuroimagem , Cabeça , Processamento de Imagem Assistida por Computador
2.
Magn Reson Med ; 85(3): 1364-1378, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32989788

RESUMO

PURPOSE: To demonstrate that fluid and white matter suppression (FLAWS) imaging can be used for high-resolution T1 mapping with low transmitted bias field ( B1+ ) sensitivity at 7T. METHODS: The FLAWS sequence was optimized for 0.8-mm isotropic resolution imaging. The theoretical accuracy and precision of the FLAWS T1 mapping was compared with the one of the magnetization-prepared two rapid gradient echoes (MP2RAGE) sequence optimized for low B1+ sensitivity. FLAWS images were acquired at 7T on six healthy volunteers (21 to 48 years old; two women). MP2RAGE and saturation-prepared with two rapid gradient echoes (SA2RAGE) datasets were also acquired to obtain T1 mapping references and B1+ maps. The contrast-to-noise ratio (CNR) between brain tissues was measured in the FLAWS-hco and MP2RAGE-uni images. The Pearson correlation was measured between the MP2RAGE and FLAWS T1 maps. The effect of B1+ on FLAWS T1 mapping was assessed using the Pearson correlation. RESULTS: The FLAWS-hco images were characterized by a higher brain tissue CNR ( CNRWM/GM=5.5 , CNRWM/CSF=14.7 , CNRGM/CSF=10.3 ) than the MP2RAGE-uni images ( CNRWM/GM=4.9 , CNRWM/CSF=6.6 , CNRGM/CSF=3.7 ). The theoretical accuracy and precision of the FLAWS T1 mapping ( acc=91.9%;prec=90.2% ) were in agreement with those provided by the MP2RAGE T1 mapping ( acc=90.0%;prec=86.8% ). A good agreement was found between in vivo T1 values measured with the MP2RAGE and FLAWS sequences (r = 0.91). A weak correlation was found between the FLAWS T1 map and the B1+ map within cortical gray matter and white matter segmentations ( rWM=-0.026 ; rGM=0.081 ). CONCLUSION: The results from this study suggest that FLAWS is a good candidate for high-resolution T1 -weighted imaging and T1 mapping at the field strength of 7T.


Assuntos
Substância Branca , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Substância Cinzenta/diagnóstico por imagem , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Substância Branca/diagnóstico por imagem , Adulto Jovem
3.
PLoS One ; 17(2): e0247343, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35180211

RESUMO

Magnetic Resonance Imaging (MRI) motion artefacts frequently complicate structural and diffusion MRI analyses. While diffusion imaging is easily 'scrubbed' of motion affected volumes, the same is not true for T1w or T2w 'structural' images. Structural images are critical to most diffusion-imaging pipelines thus their corruption can lead to disproportionate data loss. To enable diffusion-image processing when structural images are missing or have been corrupted, we propose a means by which synthetic structural images can be generated from diffusion MRI. This technique combines multi-tissue constrained spherical deconvolution, which is central to many existing diffusion analyses, with the Bloch equations that allow simulation of MRI intensities for given scanner parameters and magnetic resonance (MR) tissue properties. We applied this technique to 32 scans, including those acquired on different scanners, with different protocols and with pathology present. The resulting synthetic T1w and T2w images were visually convincing and exhibited similar tissue contrast to acquired structural images. These were also of sufficient quality to drive a Freesurfer-based tractographic analysis. In this analysis, probabilistic tractography connecting the thalamus to the primary sensorimotor cortex was delineated with Freesurfer, using either real or synthetic structural images. Tractography for real and synthetic conditions was largely identical in terms of both voxels encountered (Dice 0.88-0.95) and mean fractional anisotropy (intrasubject absolute difference 0.00-0.02). We provide executables for the proposed technique in the hope that these may aid the community in analysing datasets where structural image corruption is common, such as studies of children or cognitively impaired persons.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Líquido Cefalorraquidiano/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Epilepsia/diagnóstico por imagem , Glioma/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Anisotropia , Artefatos , Estudos de Casos e Controles , Simulação por Computador , Conectoma/métodos , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador/métodos
4.
Invest Radiol ; 57(9): 592-600, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35510874

RESUMO

OBJECTIVE: Cortical lesions are common in multiple sclerosis (MS), but their visualization is challenging on conventional magnetic resonance imaging. The uniform image derived from magnetization prepared 2 rapid acquisition gradient echoes (MP2RAGE uni ) detects cortical lesions with a similar rate as the criterion standard sequence, double inversion recovery. Fluid and white matter suppression (FLAWS) provides multiple reconstructed contrasts acquired during a single acquisition. These contrasts include FLAWS minimum image (FLAWS min ), which provides an exquisite sensitivity to the gray matter signal and therefore may facilitate cortical lesion identification, as well as high contrast FLAWS (FLAWS hco ), which gives a contrast that is similar to one of MP2RAGE uni . In this study, we compared the manual detection rate of cortical lesions on MP2RAGE uni , FLAWS min , and FLAWS hco in MS patients. Furthermore, we assessed whether the combined detection rate on FLAWS min and FLAWS hco was superior to MP2RAGE uni for cortical lesions identification. Last, we compared quantitative T1 maps (qT1) provided by both MP2RAGE and FLAWS in MS lesions. MATERIALS AND METHODS: We included 30 relapsing-remitting MS patients who underwent MP2RAGE and FLAWS magnetic resonance imaging with isotropic spatial resolution of 1 mm at 3 T. Cortical lesions were manually segmented by consensus of 3 trained raters and classified as intracortical or leukocortical lesions on (1) MP2RAGE uniform/flat images, (2) FLAWS min , and (3) FLAWS hco . In addition, segmented lesions on FLAWS min and FLAWS hco were merged to produce a union lesion map (FLAWS min + hco ). Number and volume of all cortical, intracortical, and leukocortical lesions were compared among MP2RAGE uni , FLAWS min , and FLAWS hco using Friedman test and between MP2RAGE uni and FLAWS min + hco using Wilcoxon signed rank test. The FLAWS T1 maps were then compared with the reference MP2RAGE T1 maps using relative differences in percentage. In an exploratory analysis, individual cortical lesion counts of the 3 raters were compared, and interrater variability was quantified using Fleiss Ï°. RESULTS: In total, 633 segmentations were made on the 3 contrasts, corresponding to 355 cortical lesions. The median number and volume of single cortical, intracortical, and leukocortical lesions were comparable among MP2RAGE uni , FLAWS min , and FLAWS hco . In patients with cortical lesions (22/30), median cumulative lesion volume was larger on FLAWS min (587 µL; IQR, 1405 µL) than on MP2RAGE uni (490 µL; IQR, 990 µL; P = 0.04), whereas there was no difference between FLAWS min and FLAWS hco , or FLAWS hco and MP2RAGE uni . FLAWS min + hco showed significantly greater numbers of cortical (median, 4.5; IQR, 15) and leukocortical (median, 3.5; IQR, 12) lesions than MP2RAGE uni (median, 3; IQR, 10; median, 2.5; IQR, 7; both P < 0.001). Interrater agreement was moderate on MP2RAGE uni (Ï° = 0.582) and FLAWS hco (Ï° = 0.584), but substantial on FLAWS min (Ï° = 0.614). qT1 in lesions was similar between MP2RAGE and FLAWS. CONCLUSIONS: Cortical lesions identification in FLAWS min and FLAWS hco was comparable to MP2RAGE uni . The combination of FLAWS min and FLAWS hco allowed to identify a higher number of cortical lesions than MP2RAGE uni , whereas qT1 maps did not differ between the 2 acquisition schemes.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Substância Branca , Encéfalo/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
5.
Sci Rep ; 8(1): 13650, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30209345

RESUMO

We present a study of multiple sclerosis segmentation algorithms conducted at the international MICCAI 2016 challenge. This challenge was operated using a new open-science computing infrastructure. This allowed for the automatic and independent evaluation of a large range of algorithms in a fair and completely automatic manner. This computing infrastructure was used to evaluate thirteen methods of MS lesions segmentation, exploring a broad range of state-of-theart algorithms, against a high-quality database of 53 MS cases coming from four centers following a common definition of the acquisition protocol. Each case was annotated manually by an unprecedented number of seven different experts. Results of the challenge highlighted that automatic algorithms, including the recent machine learning methods (random forests, deep learning, …), are still trailing human expertise on both detection and delineation criteria. In addition, we demonstrate that computing a statistically robust consensus of the algorithms performs closer to human expertise on one score (segmentation) although still trailing on detection scores.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/diagnóstico , Tecido Parenquimatoso/diagnóstico por imagem , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Masculino , Esclerose Múltipla/patologia , Redes Neurais de Computação , Tecido Parenquimatoso/patologia , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA