Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 27(9): 2670-83, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26823555

RESUMO

The ribonuclease angiogenin is a component of the mammalian stress response, and functions in both cell-autonomous and non-cell-autonomous ways to promote tissue adaptation to injury. We recently showed that angiogenin regulates tissue homeostasis during AKI associated with endoplasmic reticulum (ER) stress through the production of transfer RNA fragments that interfere with translation initiation and thereby alleviate ER stress. However, whether the paracrine signaling mediated by angiogenin secretion is a genuine component of the ER stress response to kidney injury is unknown. Here, we explored the molecular mechanisms by which angiogenin is secreted upon ER stress, and determined how it modulates the inflammatory microenvironment. In cultured renal epithelial cells, ER stress specifically induced angiogenin secretion under the selective control of inositol-requiring enzyme 1α, a key activator of the unfolded protein response. The transcription factors spliced X-box-binding protein 1 and p65, which are activated by inositol-requiring enzyme 1α upon ER stress, each bound the angiogenin promoter and controlled the amount of angiogenin secreted. Furthermore, p65 promoted angiogenin transcription in an ER stress-dependent manner. Similar to secretion of the ER stress-induced proinflammatory cytokine IL-6, secretion of angiogenin required the ER-Golgi pathway. Notably, incubation of human macrophages with angiogenin promoted macrophage reprogramming toward an activated and proinflammatory phenotype. In patients, angiogenin expression increased upon renal inflammation, and the urinary concentration of angiogenin correlated with the extent of immune-mediated kidney injury. Collectively, our data identify angiogenin as a mediator of the ER stress-dependent inflammatory response and as a potential noninvasive biomarker of AKI.


Assuntos
Rim/metabolismo , Transdução de Sinais , Resposta a Proteínas não Dobradas/fisiologia , Animais , Células Cultivadas , Estresse do Retículo Endoplasmático/fisiologia , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Ribonuclease Pancreático/metabolismo , Ribonuclease Pancreático/fisiologia
2.
J Am Soc Nephrol ; 27(3): 863-76, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26195817

RESUMO

Endoplasmic reticulum (ER) stress is involved in the pathophysiology of kidney disease and aging, but the molecular bases underlying the biologic outcomes on the evolution of renal disease remain mostly unknown. Angiogenin (ANG) is a ribonuclease that promotes cellular adaptation under stress but its contribution to ER stress signaling remains elusive. In this study, we investigated the ANG-mediated contribution to the signaling and biologic outcomes of ER stress in kidney injury. ANG expression was significantly higher in samples from injured human kidneys than in samples from normal human kidneys, and in mouse and rat kidneys, ANG expression was specifically induced under ER stress. In human renal epithelial cells, ER stress induced ANG expression in a manner dependent on the activity of transcription factor XBP1, and ANG promoted cellular adaptation to ER stress through induction of stress granules and inhibition of translation. Moreover, the severity of renal lesions induced by ER stress was dramatically greater in ANG knockout mice (Ang(-/-)) mice than in wild-type mice. These results indicate that ANG is a critical mediator of tissue adaptation to kidney injury and reveal a physiologically relevant ER stress-mediated adaptive translational control mechanism.


Assuntos
Injúria Renal Aguda/fisiopatologia , Estresse do Retículo Endoplasmático/fisiologia , Rim/patologia , Biossíntese de Proteínas/fisiologia , Ribonuclease Pancreático/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Adaptação Fisiológica , Animais , Apoptose , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Células Epiteliais , Inativação Gênica , Humanos , Rim/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição de Fator Regulador X , Ribonuclease Pancreático/genética , Transdução de Sinais , Fatores de Transcrição/metabolismo , Transcrição Gênica , Tunicamicina , Proteína 1 de Ligação a X-Box
3.
Biochim Biophys Acta ; 1850(7): 1426-37, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25857771

RESUMO

BACKGROUND: Cytochrome P450 2U1 (CYP2U1) has been identified from the human genome and is highly conserved in the living kingdom. In humans, it has been found to be predominantly expressed in the thymus and in the brain. CYP2U1 is considered as an "orphan" enzyme as few data are available on its physiological function(s) and active site topology. Its only substrates reported so far were unsaturated fatty acids such as arachidonic acid, and, much more recently, N-arachidonoylserotonin. METHODS: We expressed CYP2U1 in yeast Saccharomyces cerevisiae, built a 3D homology model of CYP2U1, screened a library of compounds known to be substrates of CYP2 family with metabolite detection by high performance liquid chromatography-mass spectrometry, and performed docking experiments to explain the observed regioselectivity of the reactions. RESULTS: We show that drug-related compounds, debrisoquine and terfenadine derivatives, subtrates of CYP2D6 and CYP2J2, are hydroxylated by recombinant CYP2U1 with regioselectivities different from those reported for CYP2D6 and 2J2. Docking experiments of those compounds and of arachidonic acid allow us to explain the regioselectivity of the hydroxylations on the basis of their interactions with key residues of CYP2U1 active site. MAJOR CONCLUSION: Our results show for the first time that human orphan CYP2U1 can oxidize several exogenous molecules including drugs, and describe a first CYP2U1 3D model. GENERAL SIGNIFICANCE: These results could have consequences for the metabolism of drugs particularly in the brain. The described 3D model should be useful to identify other substrates of CYP2U1 and help in understanding its physiologic roles.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Modelos Moleculares , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Western Blotting , Domínio Catalítico , Cromatografia Líquida de Alta Pressão , Simulação por Computador , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Família 2 do Citocromo P450 , Debrisoquina/química , Debrisoquina/metabolismo , Cinética , Espectrometria de Massas , Estrutura Molecular , Oxirredução , Ligação Proteica , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Especificidade por Substrato
4.
Ther Drug Monit ; 38(2): 223-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26829596

RESUMO

BACKGROUND: POR*28 is a recently newly described allelic variant of the cytochrome P450 oxidoreductase (POR), which might be associated with an increased metabolic activity of P450 cytochromes (CYP) 3A5 and 3A4. Consequently, carriers of at least 1 allele of this polymorphism could require increased calcineurin inhibitors doses to reach the target residual concentrations (C0). The objective of this study was to test whether the allelic variant of POR, which is associated with an increased metabolic activity of CYP3A, impacts tacrolimus (Tac) pharmacokinetics. METHODS: We tested this hypothesis in a population of 229 kidney transplant recipients (KTR) from a large, multicenter, prospective and randomized study. We have analyzed the association between POR*28 genotype and the proportion of individuals reaching the target Tac residual concentration (Tac C0) 10 days after transplantation. We have also measured the association between POR*28 and the Tac C0, and adjusted Tac C0 (Tac C0/Tac dose) over time using generalized mixed linear models. RESULTS: Ten days after transplantation, there was no difference of frequencies of KTR within the target range of Tac C0 (C0 10-15 ng/mL) according to the POR*28 genotype (P = 0.8). The mean Tac C0 at day 10 in the POR*1/*1 group was 15.3 ± 9.7 ng/mL compared with 15.7 ± 7.8 ng/mL in the POR*1/*28 group and 14.2 ± 6.8 ng/mL, in the POR*28/*28 group, P = 0.8. The adjusted Tac C0 was not associated with POR*28 genotype over time (random effects model, P = 0.9). When restricted to KTR expressing CYP3A5, POR*28 genotype did not impact the proportion of individuals within the Tac C0 target range neither the adjusted Tac C0 (random effects model, P = 0.1). CONCLUSIONS: POR*28 does not significantly influence Tac pharmacokinetic parameters in a large cohort of KTR. This study does not confirm recent findings indicating that POR*28 carriers require more Tac to reach target C0.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Variação Genética/genética , Imunossupressores/farmacocinética , Imunossupressores/uso terapêutico , Tacrolimo/farmacocinética , Tacrolimo/uso terapêutico , Adulto , Alelos , Citocromo P-450 CYP3A/genética , Feminino , Genótipo , Rejeição de Enxerto/genética , Rejeição de Enxerto/metabolismo , Rejeição de Enxerto/prevenção & controle , Humanos , Transplante de Rim/métodos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Transplantados
5.
Eur J Clin Pharmacol ; 71(2): 173-81, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25519826

RESUMO

OBJECTIVE: The objective of this study was to determine the influence of CYP2C9, VKORC1, CYP4F2, and GGCX genetic polymorphisms on mean daily dose of acenocoumarol in South Indian patients and to develop a new pharmacogenetic algorithm based on clinical and genetic factors. METHODS: Patients receiving acenocoumarol maintenance therapy (n = 230) were included in the study. Single nucleotide polymorphisms (SNP) of CYP2C9, VKORC1, CYP4F2, and GGCX were genotyped by real-time polymerase chain reaction (RT-PCR) method. RESULTS: The mean daily acenocoumarol maintenance dose was found to be 3.7 ± 2.3 (SD) mg/day. The CYP2C9 *1*2, CYP2C9 *1*3, and CYP2C9 *2*3 variant genotypes significantly reduced the dose by 56.7 % (2.0 mg), 67.6 % (1.6 mg), and 70.3 % (1.5 mg) than wild-type carriers 4.1 mg, p < 0.0001. The genetic variants of CYP2C9 and GGCX (rs11676382) were found to be associated with lower acenocoumarol dose, whereas CYP4F2 (rs2108622) was associated with higher doses. Age, body mass index (BMI), variation of CYP2C9, VKORC1, CYP4F2, and GGCX were the major determinants of acenocoumarol maintenance dose, accounting for 61.8 % of its variability (adjusted r (2) = 0.615, p < 0.0001). Among the VKORC1 variants, rs9923231 alone contributed up to 28.6 % of the acenocoumarol dose variation. CONCLUSION: VKORC1 rs9923231 polymorphism had the highest impact on acenocoumarol daily dose. A new pharmacogenetic algorithm was established to determine the acenocoumarol dose in South Indian population.


Assuntos
Acenocumarol/administração & dosagem , Algoritmos , Anticoagulantes/administração & dosagem , Vitamina K Epóxido Redutases/genética , Adulto , Povo Asiático/genética , Carbono-Carbono Ligases/genética , Citocromo P-450 CYP2C9/genética , Sistema Enzimático do Citocromo P-450/genética , Família 4 do Citocromo P450 , Feminino , Genótipo , Humanos , Índia , Masculino , Polimorfismo de Nucleotídeo Único
6.
Xenobiotica ; 45(12): 1129-37, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26095139

RESUMO

1. Ethanol consumption and smoking alter the expression of certain drug-metabolizing enzymes and transporters, potentially influencing the tissue-specific effects of xenobiotics. 2. Amygdala (AMG) and prefrontal cortex (PFC) are brain regions that modulate the effects of alcohol and smoking, yet little is known about the expression of cytochrome P450 enzymes (P450s) and ATP-binding cassette (ABC) transporters in these tissues. 3. Here, we describe the first study on the expression of 19 P450s, their redox partners, three ABC transporters and four related transcription factors in the AMG and PFC of smokers and alcoholics by quantitative RT-PCR. 4. CYP1A1, CYP1B1, CYP2B6, CYP2C8, CYP2C18, CYP2D6, CYP2E1, CYP2J2, CYP2S1, CYP2U1, CYP4X1, CYP46, adrenodoxin and NADPH-P450 reductase, ABCB1, ABCG2, ABCA1, and transcription factors aryl hydrocarbon receptor AhR and proliferator-activated receptor α were quantified in both areas. CYP2A6, CYP2C9, CYP2C19, CYP3A4, CYP3A5, adrenodoxin reductase and the nuclear receptors pregnane X receptor and constitutive androstane receptor were detected but below the limit of quantification. CYP1A2 and CYP2W1 were not detected. 5. Adrenodoxin expression was elevated in all case groups over controls, and smokers showed a trend toward higher CYP1A1 and CYP1B1 expression. 6. Our study shows that most xenobiotic-metabolizing P450s and associated redox partners, transporters and transcription factors are expressed in human AMG and PFC.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Alcoolismo/genética , Tonsila do Cerebelo/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Córtex Pré-Frontal/metabolismo , Fumar/genética , Fatores de Transcrição/genética , Adrenodoxina/biossíntese , Adrenodoxina/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Alcoolismo/enzimologia , Alcoolismo/metabolismo , Tonsila do Cerebelo/enzimologia , Feminino , Perfilação da Expressão Gênica , Genótipo , Humanos , Isoenzimas/genética , Masculino , Pessoa de Meia-Idade , Córtex Pré-Frontal/enzimologia , Valores de Referência , Fumar/metabolismo
7.
Anal Chem ; 86(4): 2166-74, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24437734

RESUMO

(1)H NMR is a nonbiased technique for the quantification of small molecules that could result in the identification and characterization of potential biomarkers with prognostic value and contribute to better understand pathophysiology of diseases. In this study, we used (1)H NMR spectroscopy to analyze the urinary metabolome of patients with acute intermittent porphyria (AIP), an inherited metabolic disorder of heme biosynthesis in which an accumulation of the heme precursors 5-aminolaevulinic acid (ALA) and porphobilinogen (PBG) promotes sudden neurovisceral attacks, which can be life-threatening. Our objectives were (1) to demonstrate the usefulness of (1)H NMR to identify and quantify ALA and PBG in urines from AIP patients and (2) to identify metabolites that would predict the response to AIP crisis treatment and reflect differential metabolic reprogramming. Our results indicate that (1)H NMR can help to diagnose AIP attacks based on the identification of ALA and PBG. We also show that glycin concentration increases in urines from patients with frequent recurrences at the end of the treatment, after an initial decrease, whereas PBG concentration remains low. Although the reasons for this altered are elusive, these findings indicate that a glycin metabolic reprogramming occurs in AIPr patients and is associated with recurrence. Our results validate the proof of concept of the usefulness of (1)H NMR spectroscopy in clinical chemistry for the diagnosis of acute attack of AIP and identify urinary glycin as a potential marker of recurrence of AIP acute attacks.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Porfiria Aguda Intermitente/diagnóstico , Porfiria Aguda Intermitente/urina , Adulto , Seguimentos , Humanos , Hidrogênio , Masculino , Redes e Vias Metabólicas/fisiologia , Pessoa de Meia-Idade , Porfiria Aguda Intermitente/metabolismo
8.
Blood ; 119(3): 861-7, 2012 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-22130800

RESUMO

Managing vitamin K antagonist (VKA) therapy is challenging in children because of a narrow therapeutic range and wide inter- and intra-individual variability in dose response. Only a few small studies have investigated the effect of nongenetic and genetic factors on the dose response to VKAs in children. In a cohort study including 118 children (median age 9 years; range, 3 months-18 years) mostly with cardiac disease, we evaluated by multivariate analysis the relative contribution of nongenetic factors and VKORC1/CYP2C9/CYP4F2 genotypes on warfarin (n = 83) or fluindione (n = 35) maintenance dose and the influence of these factors on the time spent within/above/below the range. The results showed that height, target international normalized ratio and VKORC1 and CYP2C9 genotypes were the main determinants of warfarin dose requirement, accounting for 48.1%, 4.4%, 18.2%, and 2.0% of variability, respectively, and explaining 69.7% of the variability. Our model predicted the warfarin dose within 7 mg/wk in 86.7% of patients. None of the covariates was associated with the time spent above or below the international normalized ratio range. Whether this model predicts accurately the effective maintenance dose is currently being investigated.


Assuntos
Anticoagulantes/administração & dosagem , Estatura/genética , Oxigenases de Função Mista/genética , Polimorfismo Genético/genética , Vitamina K/antagonistas & inibidores , Varfarina/administração & dosagem , Adolescente , Hidrocarboneto de Aril Hidroxilases/genética , Criança , Pré-Escolar , Estudos de Coortes , Citocromo P-450 CYP2C9 , Sistema Enzimático do Citocromo P-450/genética , Família 4 do Citocromo P450 , DNA/genética , Relação Dose-Resposta a Droga , Feminino , Genótipo , Cardiopatias/tratamento farmacológico , Cardiopatias/genética , Humanos , Lactente , Coeficiente Internacional Normatizado , Masculino , Modelos Estatísticos , Reação em Cadeia da Polimerase , Vitamina K Epóxido Redutases
9.
PLoS Comput Biol ; 9(12): e1003405, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24385893

RESUMO

Phenome-Wide Association Studies (PheWAS) investigate whether genetic polymorphisms associated with a phenotype are also associated with other diagnoses. In this study, we have developed new methods to perform a PheWAS based on ICD-10 codes and biological test results, and to use a quantitative trait as the selection criterion. We tested our approach on thiopurine S-methyltransferase (TPMT) activity in patients treated by thiopurine drugs. We developed 2 aggregation methods for the ICD-10 codes: an ICD-10 hierarchy and a mapping to existing ICD-9-CM based PheWAS codes. Eleven biological test results were also analyzed using discretization algorithms. We applied these methods in patients having a TPMT activity assessment from the clinical data warehouse of a French academic hospital between January 2000 and July 2013. Data after initiation of thiopurine treatment were analyzed and patient groups were compared according to their TPMT activity level. A total of 442 patient records were analyzed representing 10,252 ICD-10 codes and 72,711 biological test results. The results from the ICD-9-CM based PheWAS codes and ICD-10 hierarchy codes were concordant. Cross-validation with the biological test results allowed us to validate the ICD phenotypes. Iron-deficiency anemia and diabetes mellitus were associated with a very high TPMT activity (p = 0.0004 and p = 0.0015, respectively). We describe here an original method to perform PheWAS on a quantitative trait using both ICD-10 diagnosis codes and biological test results to identify associated phenotypes. In the field of pharmacogenomics, PheWAS allow for the identification of new subgroups of patients who require personalized clinical and therapeutic management.


Assuntos
Estudo de Associação Genômica Ampla , Metiltransferases/metabolismo , Farmacogenética , Fenótipo , Purinas/uso terapêutico , Locos de Características Quantitativas , Humanos , Classificação Internacional de Doenças
10.
J Immunol ; 189(6): 2954-64, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22896630

RESUMO

IFN-γ is a master regulator of the immune responses that occur in the transplanted kidney, acting both on the immune system and on the graft itself. The cellular responses to IFN-γ are complex, and emerging evidence suggests that IFN-γ may regulate autophagic functions. Conversely, autophagy modulates innate and adaptive immune functions in various contexts. In this study, we identify a novel mechanism by which IFN-γ activates autophagy in human kidney epithelial cells and provide new insights into how autophagy regulates immune functions in response to IFN-γ. Our results indicate that IFN-γ promotes tryptophan depletion, activates the eIF2α kinase general control nonderepressible-2 (GCN2), and leads to an increase in the autophagic flux. Further, tryptophan supplementation and RNA interference directed against GCN2 inhibited IFN-γ-induced autophagy. This process is of functional relevance because autophagy regulates the secretion of inflammatory cytokines and growth factors by human kidney epithelial cells in response to IFN-γ. These findings assign to IFN-γ a novel function in the regulation of autophagy, which, in turn, modulates IFN-γ-induced secretion of inflammatory cytokines.


Assuntos
Autofagia/imunologia , Células Epiteliais/enzimologia , Células Epiteliais/imunologia , Interferon gama/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Triptofano/deficiência , Autofagia/genética , Carcinoma de Células Renais/enzimologia , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/patologia , Citocinas/antagonistas & inibidores , Citocinas/metabolismo , Células Epiteliais/metabolismo , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Neoplasias Renais/enzimologia , Neoplasias Renais/imunologia , Neoplasias Renais/patologia , Triptofano/metabolismo , Triptofano/fisiologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA