Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
BMC Biotechnol ; 24(1): 16, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532411

RESUMO

BACKGROUND: Cytotoxic T lymphocytes (CTLs) are central players in the adaptive immune response. Their functional characterization and clinical research depend on efficient and reliable transfection. Although various methods have been utilized, electroporation remains the preferred technique for transient gene over-expression. However, the efficiency of electroporation is reduced for human and mouse primary CTLs. Lonza offers kits that effectively improve plasmid DNA transfection quality. Unfortunately, the removal of key components of the cell recovery medium considerably reduced the efficiency of their kit for CTLs. Our aim was to develop a new recovery medium to be used with Lonza's Nucleofector system that would significantly enhance transfection rates. RESULTS: We assessed the impact of different media in which the primary CTLs were placed to recover after electroporation on cell survival, transfection rate and their ability to form an immunological synapse and to perform exocytosis. We transfected the cells with pmax-GFP and large constructs encoding for either CD81-super ecliptic pHluorin or granzyme B-pHuji. The comparison of five different media for mouse and two for human CTLs demonstrated that our new recovery medium composed of Opti-MEM-GlutaMAX supplemented with HEPES, DMSO and sodium pyruvate gave the best result in cell survival (> 50%) and transfection rate (> 30 and 20% for mouse and human cells, respectively). More importantly, the functionality of CTLs was at least twice as high as with the original Lonza recovery medium. In addition, our RM significantly improved transfection efficacy of natural killer cells that are notoriously hard to electroporate. CONCLUSION: Our results show that successful transfection depends not only on the electroporation medium and pulse sequence but also on the medium applied for cell recovery. In addition, we have reduced our reliance on proprietary products by designing an effective recovery medium for both mouse and human primary CTLs and other lymphocytes that can be easily implemented by any laboratory. We expect that this recovery medium will have a significant impact on both fundamental and applied research in immunology.


Assuntos
Eletroporação , Linfócitos T Citotóxicos , Humanos , Camundongos , Animais , Eletroporação/métodos , Transfecção , Plasmídeos , DNA/genética
2.
Traffic ; 22(3): 78-93, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33369005

RESUMO

Large dense core vesicle (LDCVs) biogenesis in neuroendocrine cells involves: (a) production of cargo peptides processed in the Golgi; (b) fission of cargo loaded LDCVs undergoing maturation steps; (c) movement of these LDCVs to the plasma membrane. These steps have been resolved over several decades in PC12 cells and in bovine chromaffin cells. More recently, the molecular machinery involved in LDCV biogenesis has been examined using genetically modified mice, generating contradictory results. To address these contradictions, we have used NPY-mCherry electroporation combined with immunolabeling and super-resolution structured illumination microscopy. We show that LDCVs separate from an intermediate Golgi compartment, mature in its proximity for about 1 hour and then travel to the plasma membrane. The exocytotic machinery composed of vSNAREs and synaptotagmin1, which originate from either de novo synthesis or recycling, is most likely acquired via fusion with precursor vesicles during maturation. Finally, recycling of LDCV membrane protein is achieved in less than 2 hours. With this comprehensive scheme of LDCV biogenesis we have established a framework for future studies in mouse chromaffin cells.


Assuntos
Células Cromafins , Vesículas Secretórias , Animais , Bovinos , Membrana Celular , Exocitose , Camundongos , Células PC12 , Ratos
3.
J Neurosci ; 39(1): 18-27, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389842

RESUMO

The calcium-dependent activator proteins for secretion (CAPS) are priming factors for synaptic and large dense-core vesicles (LDCVs), promoting their entry into and stabilizing the release-ready state. A modulatory role of CAPS in catecholamine loading of vesicles has been suggested. Although an influence of CAPS on monoamine transporter function and on vesicle acidification has been reported, a role of CAPS in vesicle loading is disputed. Using expression of naturally occurring splice variants of CAPS2 into chromaffin cells from CAPS1/CAPS2 double-deficient mice of both sexes, we show that an alternative exon of 40 aa is responsible for enhanced catecholamine loading of LDCVs in mouse chromaffin cells. The presence of this exon leads to increased activity of both vesicular monoamine transporters. Deletion of CAPS does not alter acidification of vesicles. Our results establish a splice-variant-dependent modulatory effect of CAPS on catecholamine content in LDCVs.SIGNIFICANCE STATEMENT The calcium activator protein for secretion (CAPS) promotes and stabilizes the entry of catecholamine-containing vesicles of the adrenal gland into a release-ready state. Expression of an alternatively spliced exon in CAPS leads to enhanced catecholamine content in chromaffin granules. This exon codes for 40 aa with a high proline content, consistent with an unstructured loop present in the portion of the molecule generally thought to be involved in vesicle priming. CAPS variants containing this exon promote serotonin uptake into Chinese hamster ovary cells expressing either vesicular monoamine transporter. Epigenetic tuning of CAPS variants may allow modulation of endocrine adrenaline and noradrenaline release. This mechanism may extend to monoamine release in central neurons or in the enteric nervous system.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/fisiologia , Catecolaminas/metabolismo , Células Cromafins/metabolismo , Vesículas Citoplasmáticas/metabolismo , Éxons/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Animais , Células CHO , Cricetinae , Cricetulus , Feminino , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Knockout , Isoformas de Proteínas/genética , Serotonina/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
4.
Int J Mol Sci ; 21(7)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252488

RESUMO

Cytotoxic T lymphocytes (CTL) are key players of the adaptive immune system that target tumors and infected cells. A central step to that is the formation of a cell-cell contact zone between the CTL and its target called an immune synapse (IS). Here, we investigate the influence of the initial T cell receptor (TCR) trigger of a cytolytic IS on the distinct steps leading to cytotoxic granule (CG) exocytosis. We stimulated primary CTLs from mouse using lipid bilayers with varying anti-CD3 but constant ICAM concentrations. We fluorescently labeled molecular markers of distinct IS zones such as actin, CD3, granzyme B, and Synaptobrevin2 in CTLs and imaged cytolytic IS formation by total internal reflection fluorescence microscopy (TIRFM). We found that an intermediate anti-CD3 concentration of 10 µg/mL induces the fastest adhesion of CTLs to the bilayers and results in maximal CG fusion efficiency. The latency of actin ring formation, dwell time, and maximum surface area at the IS exhibit different dependencies on the stimulatory anti-CD3 concentrations. The number and surface area of CD3 clusters at the IS seem to show a different dependency to the TCR trigger when compared to their dwell time. Finally, the mode of full CG exocytosis appears to be independent of the TCR trigger.


Assuntos
Sinapses Imunológicas/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Biomarcadores , Degranulação Celular/imunologia , Citotoxicidade Imunológica , Exocitose/imunologia , Ativação Linfocitária/imunologia , Camundongos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo
5.
Biophys J ; 117(5): 795-809, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31439287

RESUMO

Roughly half of a cell's proteins are located at or near the plasma membrane. In this restricted space, the cell senses its environment, signals to its neighbors, and exchanges cargo through exo- and endocytotic mechanisms. Ligands bind to receptors, ions flow across channel pores, and transmitters and metabolites are transported against concentration gradients. Receptors, ion channels, pumps, and transporters are the molecular substrates of these biological processes, and they constitute important targets for drug discovery. Total internal reflection fluorescence (TIRF) microscopy suppresses the background from the cell's deeper layers and provides contrast for selectively imaging dynamic processes near the basal membrane of live cells. The optical sectioning of TIRF is based on the excitation confinement of the evanescent wave generated at the glass/cell interface. How deep the excitation light actually penetrates the sample is difficult to know, making the quantitative interpretation of TIRF data problematic. Nevertheless, many applications like superresolution microscopy, colocalization, Förster resonance energy transfer, near-membrane fluorescence recovery after photobleaching, uncaging or photoactivation/switching as well as single-particle tracking require the quantitative interpretation of evanescent-wave-excited images. Here, we review existing techniques for characterizing evanescent fields, and we provide a roadmap for comparing TIRF data across images, experiments, and laboratories.


Assuntos
Microscopia de Fluorescência/métodos , Calibragem , Corantes Fluorescentes/química , Refratometria , Espectrometria de Fluorescência
6.
Traffic ; 14(7): 798-809, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23590328

RESUMO

In order to fuse lytic granules (LGs) with the plasma membrane at the immunological synapse, cytotoxic T lymphocytes (CTLs) have to render these LGs fusion-competent through the priming process. In secretory tissues such as brain and neuroendocrine glands, this process is mediated by members of the Munc13 protein family. In human CTLs, mutations in the Munc13-4 gene cause a severe loss in killing efficiency, resulting in familial hemophagocytic lymphohistiocytosis type 3, suggesting a similar role of other Munc13 isoforms in the immune system. Here, we investigate the contribution of different Munc13 isoforms to the priming process of murine CTLs at both the mRNA and protein level. We demonstrate that Munc13-1 and Munc13-4 are the only Munc13 isoforms present in mouse CTLs. Both isoforms rescue the drastical secretion defect of CTLs derived from Munc13-4-deficient Jinx mice. Mobility studies using total internal reflection fluorescence microscopy indicate that Munc13-4 and Munc13-1 are responsible for the priming process of LGs. Furthermore, the domains of the Munc13 protein, which is responsible for functional fusion, could be identified. We conclude from these data that both isoforms of the Munc13 family, Munc13-1 and Munc13-4, are functionally redundant in murine CTLs.


Assuntos
Exocitose , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Vesículas Secretórias/metabolismo , Linfócitos T Citotóxicos/metabolismo , Animais , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Proteínas do Tecido Nervoso/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína
7.
EMBO J ; 30(19): 3895-912, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21847095

RESUMO

Cell polarization enables restriction of signalling into microdomains. Polarization of lymphocytes following formation of a mature immunological synapse (IS) is essential for calcium-dependent T-cell activation. Here, we analyse calcium microdomains at the IS with total internal reflection fluorescence microscopy. We find that the subplasmalemmal calcium signal following IS formation is sufficiently low to prevent calcium-dependent inactivation of ORAI channels. This is achieved by localizing mitochondria close to ORAI channels. Furthermore, we find that plasma membrane calcium ATPases (PMCAs) are re-distributed into areas beneath mitochondria, which prevented PMCA up-modulation and decreased calcium export locally. This nano-scale distribution-only induced following IS formation-maximizes the efficiency of calcium influx through ORAI channels while it decreases calcium clearance by PMCA, resulting in a more sustained NFAT activity and subsequent activation of T cells.


Assuntos
Sinalização do Cálcio , Cálcio/química , Linfócitos T/citologia , Canais de Cálcio/metabolismo , Membrana Celular/enzimologia , Citoesqueleto/metabolismo , Eletrofisiologia , Proteínas de Fluorescência Verde/metabolismo , Humanos , Sinapses Imunológicas , Células Jurkat , Ativação Linfocitária , Microscopia de Fluorescência/métodos , Mitocôndrias/metabolismo , Proteína ORAI1 , Estrutura Terciária de Proteína
8.
Eur J Immunol ; 44(2): 573-84, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24227526

RESUMO

CTLs kill target cells via fusion of lytic granules (LGs) at the immunological synapse (IS). Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) function as executors of exocytosis. The importance of SNAREs in CTL function is evident in the form of familial hemophagocytic lymphohistiocytosis type 4 that is caused by mutations in Syntaxin11 (Stx11), a Qa-SNARE protein. Here, we investigate the molecular mechanism of Stx11 function in primary human effector CTLs with high temporal and spatial resolution. Downregulation of endogenous Stx11 resulted in a complete inhibition of LG fusion that was paralleled by a reduction in LG dwell time at the IS. Dual color evanescent wave imaging suggested a sequential process, in which first Stx11 is transported to the IS through a subpopulation of recycling endosomes. The resulting Stx11 clusters at the IS then serve as a platform to mediate fusion of arriving LGs. We conclude that Stx11 functions as a t-SNARE for the final fusion of LG at the IS, explaining the severe phenotype of familial hemophagocytic lymphohistiocytosis type 4 on a molecular level.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/metabolismo , Linfócitos T Citotóxicos/metabolismo , Células Cultivadas , Grânulos Citoplasmáticos/imunologia , Regulação para Baixo/imunologia , Endossomos/imunologia , Endossomos/metabolismo , Humanos , Sinapses Imunológicas/imunologia , Sinapses Imunológicas/metabolismo , Linfo-Histiocitose Hemofagocítica/imunologia , Linfo-Histiocitose Hemofagocítica/metabolismo , Proteínas Qa-SNARE/imunologia , Proteínas SNARE/imunologia , Linfócitos T Citotóxicos/imunologia
9.
J Neurosci ; 33(43): 17123-37, 2013 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-24155316

RESUMO

Large dense core vesicle (LDCV) exocytosis in chromaffin cells follows a well characterized process consisting of docking, priming, and fusion. Total internal reflection fluorescence microscopy (TIRFM) studies suggest that some LDCVs, although being able to dock, are resistant to calcium-triggered release. This phenomenon termed dead-end docking has not been investigated until now. We characterized dead-end vesicles using a combination of membrane capacitance measurement and visualization of LDCVs with TIRFM. Stimulation of bovine chromaffin cells for 5 min with 6 µm free intracellular Ca2+ induced strong secretion and a large reduction of the LDCV density at the plasma membrane. Approximately 15% of the LDCVs were visible at the plasma membrane throughout experiments, indicating they were permanently docked dead-end vesicles. Overexpression of Munc18-2 or SNAP-25 reduced the fraction of dead-end vesicles. Conversely, expressing open-syntaxin increased the fraction of dead-end vesicles. These results indicate the existence of the unproductive target soluble N-ethylmaleimide-sensitive factor attachment protein receptor acceptor complex composed of 2:1 syntaxin-SNAP-25 in vivo. More importantly, they define a novel function for this acceptor complex in mediating dead-end docking.


Assuntos
Membrana Celular/metabolismo , Células Cromafins/metabolismo , Vesículas Secretórias/metabolismo , Animais , Cálcio/metabolismo , Bovinos , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Proteínas Q-SNARE/genética , Proteínas Q-SNARE/metabolismo , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/metabolismo
10.
Traffic ; 12(7): 890-901, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21438968

RESUMO

SNARE proteins are essential fusion mediators for many intracellular trafficking events. Here, we investigate the role of Syntaxin7 (Stx7) in the release of lytic granules from cytotoxic T lymphocytes (CTLs). We show that Stx7 is expressed in CTLs and is preferentially localized to the region of lytic granule release, the immunological synapse (IS). Interference of Stx7 function by expression of a dominant-negative Stx7 construct or by small interfering RNA leads to a dramatic reduction of CTL-mediated killing of target cells. Real-time visualization of individual lytic granules at the IS by evanescent wave microscopy reveals that lytic granules in Stx7-deprived CTLs not only fail to fuse with the plasma membrane but even fail to accumulate at the IS. Surprisingly, the accumulation defect is not caused by an overall reduction in lytic granule number, but by a defect in the trafficking of T cell receptors (TCRs) through endosomes. Subsequent high-resolution nanoscopy shows that Stx7 colocalizes with Rab7 on late endosomes. We conclude from these data that the accumulation of recycling TCRs at the IS is a SNARE-dependent process and that Stx7-mediated processing of recycling TCRs through endosomes is a prerequisite for the cytolytic function of CTLs.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Exocitose/fisiologia , Proteínas Qa-SNARE/metabolismo , Linfócitos T Citotóxicos/metabolismo , Biomarcadores/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Endossomos/metabolismo , Exocitose/imunologia , Humanos , Sinapses Imunológicas/fisiologia , Ativação Linfocitária , Fusão de Membrana/fisiologia , Proteínas Qa-SNARE/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Citotóxicos/citologia
11.
J Immunol ; 186(12): 6894-904, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21562157

RESUMO

Lytic granule (LG)-mediated apoptosis is the main mechanism by which CTL kill virus-infected and tumorigenic target cells. CTL form a tight junction with the target cells, which is called the immunological synapse (IS). To avoid unwanted killing of neighboring cells, exocytosis of lytic granules (LG) is tightly controlled and restricted to the IS. In this study, we show that in activated human primary CD8(+) T cells, docking of LG at the IS requires tethering LG with CD3-containing endosomes (CD3-endo). Combining total internal reflection fluorescence microscopy and fast deconvolution microscopy (both in living cells) with confocal microscopy (in fixed cells), we found that LG and CD3-endo tether and are cotransported to the IS. Paired but not single LG are accumulated at the IS. The dwell time of LG at the IS is substantially enhanced by tethering with CD3-endo, resulting in a preferential release of paired LG over single LG. The SNARE protein Vti1b is required for tethering of LG and CD3-endo. Downregulation of Vti1b reduces tethering of LG with CD3-endo. This leads to an impaired accumulation and docking of LG at the IS and a reduction of target cell killing. Therefore, Vti1b-dependent tethering of LG and CD3-endo determines accumulation, docking, and efficient lytic granule secretion at the IS.


Assuntos
Complexo CD3 , Endossomos/imunologia , Granzimas/imunologia , Sinapses Imunológicas/imunologia , Proteínas Qb-SNARE/imunologia , Linfócitos T Citotóxicos/imunologia , Células Cultivadas , Humanos , Microscopia , Ligação Proteica , Proteínas Qb-SNARE/metabolismo , Vesículas Secretórias/imunologia
12.
Methods Mol Biol ; 2654: 159-167, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37106182

RESUMO

Subcellular fractionation is an important tool used to separate intracellular organelles, structures or proteins. Here, we describe a stepwise protocol to isolate two types of lytic granules, multicore (MCG), and single core (SCG), from primary murine CTLs. We used cell disruption by nitrogen cavitation followed by separation of organelles via discontinuous sucrose density gradient centrifugation. Immunoisolation with a Synaptobrevin 2 antibody attached to magnetic beads was then used to harvest Synaptobrevin 2 positive granules for immunoblotting, mass spectrometry, electron, and light microscopy.


Assuntos
Proteínas , Proteína 2 Associada à Membrana da Vesícula , Camundongos , Animais , Fracionamento Celular/métodos , Proteína 2 Associada à Membrana da Vesícula/análise , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Proteínas/metabolismo , Técnicas Citológicas , Organelas , Centrifugação com Gradiente de Concentração/métodos , Grânulos Citoplasmáticos , Frações Subcelulares/metabolismo
13.
Front Immunol ; 14: 1177670, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275872

RESUMO

Regulated exocytosis is a central mechanism of cellular communication. It is not only the basis for neurotransmission and hormone release, but also plays an important role in the immune system for the release of cytokines and cytotoxic molecules. In cytotoxic T lymphocytes (CTLs), the formation of the immunological synapse is required for the delivery of the cytotoxic substances such as granzymes and perforin, which are stored in lytic granules and released via exocytosis. The molecular mechanisms of their fusion with the plasma membrane are only partially understood. In this review, we discuss the molecular players involved in the regulated exocytosis of CTL, highlighting the parallels and differences to neuronal synaptic transmission. Additionally, we examine the strengths and weaknesses of both systems to study exocytosis.


Assuntos
Exocitose , Linfócitos T Citotóxicos , Grânulos Citoplasmáticos/metabolismo , Membrana Celular , Sinapses
14.
Cell Rep ; 42(6): 112543, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37224016

RESUMO

Gonadotropes in the anterior pituitary gland are essential for fertility and provide a functional link between the brain and the gonads. To trigger ovulation, gonadotrope cells release massive amounts of luteinizing hormone (LH). The mechanism underlying this remains unclear. Here, we utilize a mouse model expressing a genetically encoded Ca2+ indicator exclusively in gonadotropes to dissect this mechanism in intact pituitaries. We demonstrate that female gonadotropes exclusively exhibit a state of hyperexcitability during the LH surge, resulting in spontaneous [Ca2+]i transients in these cells, which persist in the absence of any in vivo hormonal signals. L-type Ca2+ channels and transient receptor potential channel A1 (TRPA1) together with intracellular reactive oxygen species (ROS) levels ensure this state of hyperexcitability. Consistent with this, virus-assisted triple knockout of Trpa1 and L-type Ca2+ subunits in gonadotropes leads to vaginal closure in cycling females. Our data provide insight into molecular mechanisms required for ovulation and reproductive success in mammals.


Assuntos
Gonadotrofos , Adeno-Hipófise , Camundongos , Animais , Feminino , Hormônio Luteinizante , Hipófise , Ovulação , Mamíferos
15.
Front Mol Neurosci ; 15: 674243, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493323

RESUMO

Both paralogs of the calcium-dependent activator protein for secretion (CAPS) are required for exocytosis of synaptic vesicles (SVs) and large dense core vesicles (LDCVs). Despite approximately 80% sequence identity, CAPS1 and CAPS2 have distinct functions in promoting exocytosis of SVs and LDCVs in dorsal root ganglion (DRG) neurons. However, the molecular mechanisms underlying these differences remain enigmatic. In this study, we applied high- and super-resolution imaging techniques to systematically assess the subcellular localization of CAPS paralogs in DRG neurons deficient in both CAPS1 and CAPS2. CAPS1 was found to be more enriched at the synapses. Using - in-depth sequence analysis, we identified a unique CAPS1 N-terminal sequence, which we introduced into CAPS2. This CAPS1/2 chimera reproduced the pre-synaptic localization of CAPS1 and partially rescued synaptic transmission in neurons devoid of CAPS1 and CAPS2. Using immunoprecipitation combined with mass spectrometry, we identified CAPS1-specific interaction partners that could be responsible for its pre-synaptic enrichment. Taken together, these data suggest an important role of the CAPS1-N terminus in the localization of the protein at pre-synapses.

16.
Nat Commun ; 13(1): 1029, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210420

RESUMO

Cytotoxic T lymphocytes (CTL) kill malignant and infected cells through the directed release of cytotoxic proteins into the immunological synapse (IS). The cytotoxic protein granzyme B (GzmB) is released in its soluble form or in supramolecular attack particles (SMAP). We utilize synaptobrevin2-mRFP knock-in mice to isolate fusogenic cytotoxic granules in an unbiased manner and visualize them alone or in degranulating CTLs. We identified two classes of fusion-competent granules, single core granules (SCG) and multi core granules (MCG), with different diameter, morphology and protein composition. Functional analyses demonstrate that both classes of granules fuse with the plasma membrane at the IS. SCG fusion releases soluble GzmB. MCGs can be labelled with the SMAP marker thrombospondin-1 and their fusion releases intact SMAPs. We propose that CTLs use SCG fusion to fill the synaptic cleft with active cytotoxic proteins instantly and parallel MCG fusion to deliver latent SMAPs for delayed killing of refractory targets.


Assuntos
Sinapses Imunológicas , Linfócitos T Citotóxicos , Animais , Membrana Celular , Grânulos Citoplasmáticos/metabolismo , Sinapses Imunológicas/metabolismo , Camundongos
17.
FASEB J ; 24(2): 425-35, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19805577

RESUMO

Ca(2+) homeostasis requires balanced uptake and extrusion, and dysregulation leads to disease. TRPV6 channels are homeostasis regulators, are upregulated in certain cancers, and show an unusual allele-specific evolution in humans. To understand how Ca(2+) uptake can be adapted to changes in metabolic status, we investigate regulation of Ca(2+)-influx by ATP and phosphorylation. We show that ATP binds to TRPV6, reduces whole-cell current increments, and prevents channel rundown with an EC(50) of 380 microM. By using both biochemical binding studies and patch-clamp analyses of wild-type and mutant channels, we have mapped one relevant site for regulation by ATP to residues within the ankyrin repeat domain (ARD) and identify an additional C-terminal binding region. Stimulation of PKC largely prevented the effects of ATP. This regulation requires PKC(betaII) and defined phosphorylation sites within the ARD and the C-terminus. Both regulatory sites act synergistically to constitute a novel mechanism by which ATP stabilizes channel activity and acts as a metabolic switch for Ca(2+) influx. Decreases in ATP concentration or activation of PKC(betaII) disable regulation of the channels by ATP, rendering them more susceptible to inactivation and rundown and preventing Ca(2+) overload.


Assuntos
Trifosfato de Adenosina/metabolismo , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Canais de Cátion TRPV/metabolismo , Linhagem Celular , Humanos , Isoenzimas/metabolismo , Técnicas de Patch-Clamp , Fosforilação , Proteína Quinase C/metabolismo , Proteína Quinase C beta
18.
Proc Natl Acad Sci U S A ; 105(24): 8434-9, 2008 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-18550821

RESUMO

Exocytosis of neurotransmitters and hormones occurs through the fusion of secretory vesicles with the plasma membrane. This highly regulated process involves key proteins, such as SNAREs, and specific lipids at the site of membrane fusion. Phospholipase D (PLD) has recently emerged as a promoter of membrane fusion in various exocytotic events potentially by providing fusogenic cone-shaped phosphatidic acid. We show here that PLD1 is regulated by ribosomal S6 kinase 2 (RSK2)-dependent phosphorylation. RSK2 is activated by a high K(+)-induced rise in cytosolic calcium. Expression of inactive RSK2 mutants or selective knockdown of endogenous RSK2 dramatically affects the different kinetic components of the exocytotic response in chromaffin cells. RSK2 physically interacts with and stimulates PLD activity through the phosphorylation of Thr-147 in the PLD1 amino-terminal phox homology domain. Expression of PLD1 phosphomimetic mutants fully restores secretion in cells depleted of RSK2, suggesting that RSK2 is a critical upstream signaling element in the activation of PLD1 to produce the lipids required for exocytosis. We propose that PLD-related defects in neuronal and endocrine activities could contribute to the effect observed after the loss-of-function mutations in Rsk2 that lead to Coffin-Lowry syndrome, an X-linked form of growth and mental retardation.


Assuntos
Cálcio/metabolismo , Células Cromafins/metabolismo , Síndrome de Coffin-Lowry/enzimologia , Exocitose , Fosfolipase D/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Animais , Células Cromafins/enzimologia , Síndrome de Coffin-Lowry/genética , Exocitose/genética , Células PC12 , Ácidos Fosfatídicos/metabolismo , Fosforilação , Ratos , Proteínas Quinases S6 Ribossômicas 90-kDa/genética
19.
Front Mol Neurosci ; 14: 728498, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497491

RESUMO

Different families of auxiliary subunits regulate the function and trafficking of native α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the central nervous system. While a facilitatory role of auxiliary subunits in ER export and forward trafficking of newly synthesized AMPA receptors is firmly established, it is unclear whether auxiliary subunits also control endosomal receptor turnover in dendrites. Here, we manipulated the composition of AMPA receptor complexes in cultured hippocampal neurons by overexpression of two auxiliary subunits, transmembrane AMPAR regulatory protein (TARP) γ-8 or cysteine knot AMPAR-modulating protein (CKAMP) 44a, and monitored dendritic receptor cycling in live-cell imaging experiments. Receptor surface delivery was assayed using a modified AMPA receptor subunit carrying the pH-dependent fluorophore superecliptic pHluorin (SEP-GluA1), which regains its fluorescence during receptor exocytosis, when transiting from the acidic lumen of transport organelles to the neutral extracellular medium. Strikingly, we observed a dramatic reduction in the spontaneous fusion rate of AMPA receptor-containing organelles in neurons overexpressing either type of auxiliary subunit. An analysis of intracellular receptor distribution also revealed a decreased receptor pool in dendritic recycling endosomes, suggesting that incorporation of TARPγ-8 or CKAMP44a in receptor complexes generally diminishes cycling through the endosomal compartment. To directly analyze dendritic receptor turnover, we also generated a new reporter by N-terminal fusion of a self-labeling HaloTag to an AMPA receptor subunit (HaloTag-GluA1), which allows for selective, irreversible staining of surface receptors. Pulse chase-experiments with HaloTag-GluA1 indeed demonstrated that overexpression of TARPγ-8 or CKAMP44a reduces the constitutive internalization rate of surface receptors at extrasynaptic but not synaptic sites. Thus, our data point to a yet unrecognized regulatory function of TARPγ-8 and CKAMP44a, by which these structurally unrelated auxiliary subunits delay local recycling and increase surface lifetime of extrasynaptic AMPA receptors.

20.
Neuron ; 46(1): 75-88, 2005 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-15820695

RESUMO

CAPS1 is thought to play an essential role in mediating exocytosis from large dense-core vesicles (LDCVs). We generated CAPS1-deficient (KO) mice and studied exocytosis in a model system for Ca2+-dependent LDCV secretion, the adrenal chromaffin cell. Adult heterozygous CAPS1 KO cells display a gene dosage-dependent decrease of CAPS1 expression and a concomitant reduction in the number of docked vesicles and secretion. Embryonic homozygous CAPS1 KO cells show a strong reduction in the frequency of amperometrically detectable release events of transmitter-filled vesicles, while the total number of fusing vesicles, as judged by capacitance recordings or total internal reflection microscopy, remains unchanged. We conclude that CAPS1 is required for an essential step in the uptake or storage of catecholamines in LDCVs.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Catecolaminas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Vesículas Secretórias/fisiologia , Animais , Western Blotting , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/deficiência , Proteínas de Ligação ao Cálcio/genética , Células Cultivadas , Embrião de Mamíferos , Exocitose/fisiologia , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Neurônios/ultraestrutura , Técnicas de Patch-Clamp
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA