Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35163580

RESUMO

Magnesium (Mg) is essential for skeletal muscle health, but little is known about the modulation of Mg and its transporters in myogenic differentiation. Here, we show in C2C12 murine myoblasts that Mg concentration fluctuates during their differentiation to myotubes, declining early in the process and reverting to basal levels once the cells are differentiated. The level of the Mg transporter MagT1 decreases at early time points and is restored at the end of the process, suggesting a possible role in the regulation of intracellular Mg concentration. In contrast, TRPM7 is rapidly downregulated and remains undetectable in myotubes. The reduced amounts of TRPM7 and MagT1 are due to autophagy, one of the proteolytic systems activated during myogenesis and essential for the membrane fusion process. Moreover, we investigated the levels of SLC41A1, which increase once cells are differentiated, mainly through transcriptional regulation. In conclusion, myogenesis is associated with alterations of Mg homeostasis finely tuned through the modulation of MagT1, TRPM7 and SLC41A1.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Diferenciação Celular , Magnésio/metabolismo , Desenvolvimento Muscular , Mioblastos/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Proteínas de Transporte de Cátions/genética , Linhagem Celular , Camundongos , Canais de Cátion TRPM/genética
2.
Int J Mol Sci ; 23(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35409073

RESUMO

Middle-aged and master endurance athletes exhibit similar physical performance and long-term muscle adaptation to aerobic exercise. Nevertheless, we hypothesized that the short-term plasticity of the skeletal muscle might be distinctly altered for master athletes when they are challenged by a single bout of prolonged moderate-intensity exercise. Six middle-aged (37Y) and five older (50Y) master highly-trained athletes performed a 24-h treadmill run (24TR). Vastus lateralis muscle biopsies were collected before and after the run and assessed for proteomics, fiber morphometry, intramyocellular lipid droplets (LD), mitochondrial oxidative activity, extracellular matrix (ECM), and micro-vascularisation. Before 24TR, muscle fiber type morphometry, intramyocellular LD, oxidative activity, ECM and micro-vascularisation were similar between master and middle-aged runners. For 37Y runners, 24TR was associated with ECM thickening, increased capillary-to-fiber interface, and an 89% depletion of LD in type-I fibers. In contrast, for 50Y runners, 24TR did not alter ECM and capillarization and poorly depleted LDs. Moreover, an impaired succinate dehydrogenase activity and functional class scoring of proteomes suggested reduced oxidative phosphorylation post-24TR exclusively in 50Y muscle. Collectively, our data support that middle-aged and master endurance athletes exhibit distinct transient plasticity in response to a single bout of ultra-endurance exercise, which may constitute early signs of muscle aging for master athletes.


Assuntos
Atletas , Resistência Física , Envelhecimento/fisiologia , Exercício Físico/fisiologia , Humanos , Pessoa de Meia-Idade , Músculo Esquelético/fisiologia , Resistência Física/fisiologia
3.
Blood ; 134(25): 2233-2241, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31742587

RESUMO

Sickle cell disease (SCD) is a genetic hemoglobinopathy leading to 2 major clinical manifestations: severe chronic hemolytic anemia and iterative vaso-occlusive crises. SCD is also accompanied by profound muscle microvascular remodeling. The beneficial effects of endurance training on microvasculature are widely known. The aim of this study was to evaluate the effects of an endurance training program on microvasculature of skeletal muscle in SCD patients. A biopsy of the vastus lateralis muscle and submaximal incremental exercise was performed before and after the training period. Of the 40 randomized SCD patients, complete data sets from 32 patients were obtained. The training group (n = 15) followed a personalized moderate-intensity endurance training program, while the nontraining (n = 17) group maintained a normal lifestyle. Training consisted of three 40-minute cycle ergometer exercise sessions per week for 8 weeks. Histological analysis highlighted microvascular benefits in the training SCD patients compared with nontraining patients, including increases in capillary density (P = .003), number of capillaries around a fiber (P = .015), and functional exchange surface (P < .0001). Conversely, no significant between-group difference was found in the morphology of capillaries. Indexes of physical ability also improved in the training patients. The moderate-intensity endurance exercise training program improved the muscle capillary network and partly reversed the microvascular defects commonly observed in skeletal muscle of SCD patients. This trial was registered at www.clinicaltrials.gov as #NCT02571088.


Assuntos
Anemia Falciforme , Treino Aeróbico , Terapia por Exercício , Microvasos/fisiopatologia , Músculo Esquelético , Adulto , Anemia Falciforme/fisiopatologia , Anemia Falciforme/terapia , Feminino , Humanos , Masculino , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/fisiopatologia
4.
Int J Mol Sci ; 22(8)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921590

RESUMO

(1) Background: Aging is associated with a progressive decline in muscle mass and function. Aging is also a primary risk factor for metabolic syndrome, which further alters muscle metabolism. However, the molecular mechanisms involved remain to be clarified. Herein we performed omic profiling to decipher in muscle which dominating processes are associated with healthy aging and metabolic syndrome in old men. (2) Methods: This study included 15 healthy young, 15 healthy old, and 9 old men with metabolic syndrome. Old men were selected from a well-characterized cohort, and each vastus lateralis biopsy was used to combine global transcriptomic and proteomic analyses. (3) Results: Over-representation analysis of differentially expressed genes (ORA) and functional class scoring of pathways (FCS) indicated that healthy aging was mainly associated with upregulations of apoptosis and immune function and downregulations of glycolysis and protein catabolism. ORA and FCS indicated that with metabolic syndrome the dominating biological processes were upregulation of proteolysis and downregulation of oxidative phosphorylation. Proteomic profiling matched 586 muscle proteins between individuals. The proteome of healthy aging revealed modifications consistent with a fast-to-slow transition and downregulation of glycolysis. These transitions were reduced with metabolic syndrome, which was more associated with alterations in NADH/NAD+ shuttle and ß-oxidation. Proteomic profiling further showed that all old muscles overexpressed protein chaperones to preserve proteostasis and myofiber integrity. There was also evidence of aging-related increases in reactive oxygen species but better detoxifications of cytotoxic aldehydes and membrane protection in healthy than in metabolic syndrome muscles. (4) Conclusions: Most candidate proteins and mRNAs identified herein constitute putative muscle biomarkers of healthy aging and metabolic syndrome in old men.


Assuntos
Síndrome Metabólica/metabolismo , Proteômica/métodos , Animais , Glicólise/genética , Glicólise/fisiologia , Humanos , Síndrome Metabólica/genética , Músculo Esquelético/metabolismo , Sarcopenia/genética , Sarcopenia/metabolismo , Transcriptoma/genética
5.
Int J Mol Sci ; 21(10)2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32456262

RESUMO

Mitochondria alterations are a classical feature of muscle immobilization, and autophagy is required for the elimination of deficient mitochondria (mitophagy) and the maintenance of muscle mass. We focused on the regulation of mitochondrial quality control during immobilization and remobilization in rat gastrocnemius (GA) and tibialis anterior (TA) muscles, which have very different atrophy and recovery kinetics. We studied mitochondrial biogenesis, dynamic, movement along microtubules, and addressing to autophagy. Our data indicated that mitochondria quality control adapted differently to immobilization and remobilization in GA and TA muscles. Data showed i) a disruption of mitochondria dynamic that occurred earlier in the immobilized TA, ii) an overriding role of mitophagy that involved Parkin-dependent and/or independent processes during immobilization in the GA and during remobilization in the TA, and iii) increased mitochondria biogenesis during remobilization in both muscles. This strongly emphasized the need to consider several muscle groups to study the mechanisms involved in muscle atrophy and their ability to recover, in order to provide broad and/or specific clues for the development of strategies to maintain muscle mass and improve the health and quality of life of patients.


Assuntos
Mitocôndrias Musculares/metabolismo , Mitofagia , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Animais , Masculino , Atividade Motora , Músculo Esquelético/fisiologia , Músculo Esquelético/fisiopatologia , Ratos , Ratos Wistar , Restrição Física/efeitos adversos
6.
Mol Cell Proteomics ; 13(1): 283-94, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24217021

RESUMO

Sarcopenia corresponds to the loss of muscle mass occurring during aging, and is associated with a loss of muscle functionality. Proteomic links the muscle functional changes with protein expression pattern. To better understand the mechanisms involved in muscle aging, we performed a proteomic analysis of Vastus lateralis muscle in mature and older women. For this, a shotgun proteomic method was applied to identify soluble proteins in muscle, using a combination of high performance liquid chromatography and mass spectrometry. A label-free protein profiling was then conducted to quantify proteins and compare profiles from mature and older women. This analysis showed that 35 of the 366 identified proteins were linked to aging in muscle. Most of the proteins were under-represented in older compared with mature women. We built a functional interaction network linking the proteins differentially expressed between mature and older women. The results revealed that the main differences between mature and older women were defined by proteins involved in energy metabolism and proteins from the myofilament and cytoskeleton. This is the first time that label-free quantitative proteomics has been applied to study of aging mechanisms in human skeletal muscle. This approach highlights new elements for elucidating the alterations observed during aging and may lead to novel sarcopenia biomarkers.


Assuntos
Envelhecimento/metabolismo , Proteômica , Músculo Quadríceps/metabolismo , Sarcopenia/metabolismo , Envelhecimento/fisiologia , Biomarcadores/metabolismo , Metabolismo Energético , Feminino , Perfilação da Expressão Gênica , Humanos , Espectrometria de Massas , Músculo Quadríceps/fisiologia , Sarcopenia/etiologia , Sarcopenia/patologia
7.
BMC Genomics ; 15: 1165, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25532418

RESUMO

BACKGROUND: Muscle ageing contributes to both loss of functional autonomy and increased morbidity. Muscle atrophy accelerates after 50 years of age, but the mechanisms involved are complex and likely result from the alteration of a variety of interrelated functions. In order to better understand the molecular mechanisms underlying muscle chronological ageing in human, we have undertaken a top-down differential proteomic approach to identify novel biomarkers after the fifth decade of age. RESULTS: Muscle samples were compared between adult (56 years) and old (78 years) post-menopausal women. In addition to total muscle extracts, low-ionic strength extracts were investigated to remove high abundance myofibrillar proteins and improve the detection of low abundance proteins. Two-dimensional gel electrophoreses with overlapping IPGs were used to improve the separation of muscle proteins. Overall, 1919 protein spots were matched between all individuals, 95 were differentially expressed and identified by mass spectrometry, and they corresponded to 67 different proteins. Our results suggested important modifications in cytosolic, mitochondrial and lipid energy metabolism, which may relate to dysfunctions in old muscle force generation. A fraction of the differentially expressed proteins were linked to the sarcomere and cytoskeleton (myosin light-chains, troponin T, ankyrin repeat domain-containing protein-2, vinculin, four and a half LIM domain protein-3), which may account for alterations in contractile properties. In line with muscle contraction, we also identified proteins related to calcium signal transduction (calsequestrin-1, sarcalumenin, myozenin-1, annexins). Muscle ageing was further characterized by the differential regulation of several proteins implicated in cytoprotection (catalase, peroxiredoxins), ion homeostasis (carbonic anhydrases, selenium-binding protein 1) and detoxification (aldo-keto reductases, aldehyde dehydrogenases). Notably, many of the differentially expressed proteins were central for proteostasis, including heat shock proteins and proteins involved in proteolysis (valosin-containing protein, proteasome subunit beta type-4, mitochondrial elongation factor-Tu). CONCLUSIONS: This study describes the most extensive proteomic analysis of muscle ageing in humans, and identified 34 new potential biomarkers. None of them were previously recognized as differentially expressed in old muscles, and each may represent a novel starting point to elucidate the mechanisms of muscle chronological ageing in humans.


Assuntos
Envelhecimento/metabolismo , Músculos/metabolismo , Pós-Menopausa/fisiologia , Proteômica , Idoso , Biomarcadores/metabolismo , Proteínas Sanguíneas/metabolismo , Citoplasma/metabolismo , Proteínas do Citoesqueleto/metabolismo , Citotoxinas/metabolismo , Metabolismo Energético , Feminino , Humanos , Metabolismo dos Lipídeos , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Músculos/citologia , Músculos/fisiologia , Estresse Oxidativo , Pós-Menopausa/metabolismo , Proteólise , Sarcômeros/metabolismo , Sarcopenia/metabolismo , Transdução de Sinais , Transcriptoma
8.
Biogerontology ; 14(3): 339-52, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23624703

RESUMO

Skeletal muscle ageing is characterized by a progressive and dramatic loss of muscle mass and strength leading to decreased muscular function resulting in muscle weakness which is often referred to as sarcopenia. Following the standardisation of "omics" approaches to study the genome (genomics) and the transcriptome (transcriptomics), the study of the proteins encoded by the genome, referred to as proteomics, is a tremendous challenge. Unlike the genome, the proteome varies in response to many physiological or pathological factors. In addition, the proteome is orders of magnitude more complex than the transcriptome due to post-translational modifications, protein oxidation and limited protein degradation. Proteomic studies, including the analysis of protein abundance as well as post-translational modified proteins have been shown to provide valuable information to unravel the key molecular pathways implicated in complex biological processes, such as tissue and organ ageing. In this article, we will describe proteomic approaches for the analysis of protein abundance as well as the specific protein targets for oxidative damage upon oxidative stress and/or during skeletal muscle ageing.


Assuntos
Envelhecimento/fisiologia , Regulação da Expressão Gênica/fisiologia , Proteínas Musculares/fisiologia , Músculo Esquelético/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Proteômica/métodos , Envelhecimento/genética , Animais , Citoesqueleto/fisiologia , Metabolismo Energético/fisiologia , Europa (Continente) , Humanos , Modelos Animais , Proteínas Musculares/genética , Estresse Oxidativo/fisiologia , Sarcopenia/fisiopatologia
9.
Cell Metab ; 6(6): 425-7, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18054311

RESUMO

FoxO3 regulates the transcription of critical components of the ubiquitin-proteasome system in muscle wasting. Two reports (Mammucari et al., 2007; Zhao et al., 2007) now implicate FoxO3 in the transcription of autophagy-related genes and provide the first direct evidence for a coordinated role of autophagy in muscle atrophy.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Músculo Esquelético/metabolismo , Peptídeo Hidrolases/metabolismo , Animais , Autofagia/genética , Autofagia/fisiologia , Proteína Forkhead Box O3 , Humanos , Modelos Biológicos , Atrofia Muscular/etiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Transcrição Gênica , Ubiquitina/metabolismo
10.
Am J Physiol Endocrinol Metab ; 303(11): E1335-47, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23032683

RESUMO

Sustained muscle wasting due to immobilization leads to weakening and severe metabolic consequences. The mechanisms responsible for muscle recovery after immobilization are poorly defined. Muscle atrophy induced by immobilization worsened in the lengthened tibialis anterior (TA) muscle but not in the shortened gastrocnemius muscle. Here, we investigated some mechanisms responsible for this differential response. Adult rats were subjected to unilateral hindlimb casting for 8 days (I8). Casts were removed at I8, and animals were allowed to recover for 10 days (R1 to R10). The worsening of TA atrophy following immobilization occurred immediately after cast removal at R1 and was sustained until R10. This atrophy correlated with a decrease in type IIb myosin heavy chain (MyHC) isoform and an increase in type IIx, IIa, and I isoforms, with muscle connective tissue thickening, and with increased collagen (Col) I mRNA levels. Increased Col XII, Col IV, and Col XVIII mRNA levels during TA immobilization normalized at R6. Sustained enhanced peptidase activities of the proteasome and apoptosome activity contributed to the catabolic response during the studied recovery period. Finally, increased nuclear apoptosis prevailed only in the connective tissue compartment of the TA. Altogether, the worsening of the TA atrophy pending immediate reloading reflects a major remodeling of its fiber type properties and alterations in the structure/composition of the extracellular compartment that may influence its elasticity/stiffness. The data suggest that sustained enhanced ubiquitin-proteasome-dependent proteolysis and apoptosis are important for these adaptations and provide some rationale for explaining the atrophy of reloaded muscles pending immobilization in a lengthened position.


Assuntos
Apoptose/fisiologia , Colágeno/metabolismo , Imobilização/efeitos adversos , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Animais , Colágeno/classificação , Colágeno/genética , Células do Tecido Conjuntivo , Masculino , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Cadeias Pesadas de Miosina/classificação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , RNA Mensageiro/análise , Ratos , Ratos Wistar , Recuperação de Função Fisiológica/fisiologia , Fatores de Tempo , Ubiquitina/metabolismo
11.
FASEB J ; 25(11): 3790-802, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21764995

RESUMO

Muscle atrophy prevails in numerous diseases (cancer cachexia, renal failure, infections, etc.), mainly results from elevated proteolysis, and is accelerated by bed rest. This largely contributes to increased health costs. Devising new strategies to prevent muscle wasting is a major clinical challenge. The ubiquitin proteasome system (UPS) degrades myofibrillar proteins, but the precise mechanisms responsible for actin breakdown are surprisingly poorly characterized. We report that chimeric flag-actin was destabilized and polyubiquitinylated in stably transfected C2C12 myotubes treated with the catabolic agent dexamethasone (1 µM) and that only proteasome inhibitors blocked its breakdown. Actin polyubiquitinylation was also detected in wild-type C2C12 myotubes and human muscle biopsies from control participants and patients with cancer. The muscle-specific E3 ubiquitin ligase MuRF1 is up-regulated in catabolic conditions and polyubiquitinylates components of the thick filament. We also demonstrate that recombinant GST-MuRF1 physically interacted and polyubiquitinylated actin in vitro and that MuRF1 is a critical component for actin breakdown, since MuRF1 siRNA stabilized flag-actin. These data identify unambiguously the abundant contractile protein actin as a target of the UPS in skeletal muscle both in vitro and in vivo, further supporting the need for new strategies blocking specifically the activation of this pathway in muscle wasting conditions.


Assuntos
Actinas/metabolismo , Proteínas Musculares/metabolismo , Miofibrilas/metabolismo , Poliubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular , Dexametasona/farmacologia , Humanos , Leupeptinas/farmacologia , Camundongos , Músculos/metabolismo , Oligopeptídeos , Peptídeos/química , Peptídeos/metabolismo , Inibidores de Proteassoma , RNA Interferente Pequeno/farmacologia , Ratos , Proteínas com Motivo Tripartido
12.
Data Brief ; 43: 108321, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35677625

RESUMO

This data article reports the level of expression of messenger RNA (mRNA) obtained from a set of 18 skeletal muscle samples using Affymetrix Genechips Exon arrays. Data were obtained from Gastrocnemius muscle of C57BL6 male mice at 3 distinct age groups, 2, 11 and 25 months old representing young, mature adult and aged groups. The data submitted to GEO constitute a large dataset of 15,300 mRNA levels. The data include eighteen .CEL files obtained after scanning mouse exon arrays and one .xls file obtained after processing with Genespring GX 14.9. Three distinct files containing affymetrix data processed using Genespring and analyzed for differences between stages 2 per 2 are provided as supplementary data.

13.
J Gerontol A Biol Sci Med Sci ; 77(1): 47-54, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34406381

RESUMO

The aim of the study was to evaluate the association between physical activity, knee extensors (KE) performance (ie, isometric strength and fatigability), and biological parameters (ie, muscle structural, microvascular, and metabolic properties) in healthy very old men and women. Thirty very old adults (82 ± 1 years, 15 women) performed an isometric Quadriceps Intermittent Fatigue (QIF) test for the assessment of KE maximal force, total work (index of absolute performance), and fatigability. Muscle biopsies from the vastus lateralis muscle were collected to assess muscle fibers type and morphology, microvasculature, and enzymes activity. Correlation analyses were used to investigate the relationships between physical activity (steps/day, actimetry), KE performance, and biological data for each sex separately. Men, compared to women, showed greater total work at the QIF test (44 497 ± 8 629 Ns vs 26 946 ± 4 707 Ns; p < .001). Steps per day were correlated with total work only for women (r = 0.73, p = .011). In men, steps per day were correlated with the percentage (r = 0.57, p = .033), shape factor (r = 0.75, p = .002), and capillary tortuosity of type IIX fibers (r = 0.59, p = .035). No other relevant correlations were observed for men or women between steps per day and biological parameters. Physical activity level was positively associated with the capacity of very old women to perform a fatiguing test, but not maximal force production capacity of the KE. Physical activity of very old men was not correlated with muscle performance. We suggest that very old women could be at higher risk of autonomy loss and increasing the steps per day count could provide a sufficient stimulus for adaptations in less active women.


Assuntos
Fadiga Muscular , Músculo Quadríceps , Exercício Físico/fisiologia , Feminino , Humanos , Contração Isométrica/fisiologia , Joelho/fisiologia , Masculino , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Músculo Quadríceps/fisiologia
14.
Nutrients ; 13(4)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804939

RESUMO

Magnesium (Mg) is essential to skeletal muscle where it plays a key role in myofiber relaxation. Although the importance of Mg in the mature skeletal muscle is well established, little is known about the role of Mg in myogenesis. We studied the effects of low and high extracellular Mg in C2C12 myogenic differentiation. Non-physiological Mg concentrations induce oxidative stress in myoblasts. The increase of reactive oxygen species, which occurs during the early phase of the differentiation process, inhibits myoblast membrane fusion, thus impairing myogenesis. Therefore, correct Mg homeostasis, also maintained through a correct dietary intake, is essential to assure the regenerative capacity of skeletal muscle fibers.


Assuntos
Magnésio/metabolismo , Fusão de Membrana/fisiologia , Desenvolvimento Muscular/fisiologia , Mioblastos/fisiologia , Estresse Oxidativo/fisiologia , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Camundongos
15.
Nutrients ; 13(7)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202561

RESUMO

Chronic Mg2+ deficiency is the underlying cause of a broad range of health dysfunctions. As 25% of body Mg2+ is located in the skeletal muscle, Mg2+ transport and homeostasis systems (MgTHs) in the muscle are critical for whole-body Mg2+ homeostasis. In the present study, we assessed whether Mg2+ deficiency alters muscle fiber characteristics and major pathways regulating muscle physiology. C57BL/6J mice received either a control, mildly, or severely Mg2+-deficient diet (0.1%; 0.01%; and 0.003% Mg2+ wt/wt, respectively) for 14 days. Mg2+ deficiency slightly decreased body weight gain and muscle Mg2+ concentrations but was not associated with detectable variations in gastrocnemius muscle weight, fiber morphometry, and capillarization. Nonetheless, muscles exhibited decreased expression of several MgTHs (MagT1, CNNM2, CNNM4, and TRPM6). Moreover, TaqMan low-density array (TLDA) analyses further revealed that, before the emergence of major muscle dysfunctions, even a mild Mg2+ deficiency was sufficient to alter the expression of genes critical for muscle physiology, including energy metabolism, muscle regeneration, proteostasis, mitochondrial dynamics, and excitation-contraction coupling.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Homeostase/genética , Deficiência de Magnésio/genética , Magnésio/metabolismo , Músculo Esquelético/metabolismo , Animais , Modelos Animais de Doenças , Metabolismo Energético/genética , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Transdução de Sinais/genética
16.
Cells ; 10(8)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34440743

RESUMO

The ubiquitin proteasome system (UPS) is the main player of skeletal muscle wasting, a common characteristic of many diseases (cancer, etc.) that negatively impacts treatment and life prognosis. Within the UPS, the E3 ligase MuRF1/TRIM63 targets for degradation several myofibrillar proteins, including the main contractile proteins alpha-actin and myosin heavy chain (MHC). We previously identified five E2 ubiquitin-conjugating enzymes interacting with MuRF1, including UBE2L3/UbcH7, that exhibited a high affinity for MuRF1 (KD = 50 nM). Here, we report a main effect of UBE2L3 on alpha-actin and MHC degradation in catabolic C2C12 myotubes. Consistently UBE2L3 knockdown in Tibialis anterior induced hypertrophy in dexamethasone (Dex)-treated mice, whereas overexpression worsened the muscle atrophy of Dex-treated mice. Using combined interactomic approaches, we also characterized the interactions between MuRF1 and its substrates alpha-actin and MHC and found that MuRF1 preferentially binds to filamentous F-actin (KD = 46.7 nM) over monomeric G-actin (KD = 450 nM). By contrast with actin that did not alter MuRF1-UBE2L3 affinity, binding of MHC to MuRF1 (KD = 8 nM) impeded UBE2L3 binding, suggesting that differential interactions prevail with MuRF1 depending on both the substrate and the E2. Our data suggest that UBE2L3 regulates contractile proteins levels and skeletal muscle atrophy.


Assuntos
Actinas/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Animais , Linhagem Celular , Dexametasona/farmacologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitina-Proteína Ligases/metabolismo
17.
Cells ; 10(8)2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34440643

RESUMO

Muscle atrophy arises from a multiplicity of physio-pathological situations and has very detrimental consequences for the whole body. Although knowledge of muscle atrophy mechanisms keeps growing, there is still no proven treatment to date. This study aimed at identifying new drivers for muscle atrophy resistance. We selected an innovative approach that compares muscle transcriptome between an original model of natural resistance to muscle atrophy, the hibernating brown bear, and a classical model of induced atrophy, the unloaded mouse. Using RNA sequencing, we identified 4415 differentially expressed genes, including 1746 up- and 2369 down-regulated genes, in bear muscles between the active versus hibernating period. We focused on the Transforming Growth Factor (TGF)-ß and the Bone Morphogenetic Protein (BMP) pathways, respectively, involved in muscle mass loss and maintenance. TGF-ß- and BMP-related genes were overall down- and up-regulated in the non-atrophied muscles of the hibernating bear, respectively, and the opposite occurred for the atrophied muscles of the unloaded mouse. This was further substantiated at the protein level. Our data suggest TGF-ß/BMP balance is crucial for muscle mass maintenance during long-term physical inactivity in the hibernating bear. Thus, concurrent activation of the BMP pathway may potentiate TGF-ß inhibiting therapies already targeted to prevent muscle atrophy.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Hibernação , Atrofia Muscular/metabolismo , Músculo Quadríceps/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ursidae/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/genética , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Elevação dos Membros Posteriores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atrofia Muscular/genética , Atrofia Muscular/patologia , Músculo Quadríceps/patologia , RNA-Seq , Transdução de Sinais , Fatores de Tempo , Transcriptoma , Fator de Crescimento Transformador beta/genética , Ursidae/genética
18.
Nutrients ; 13(12)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34959754

RESUMO

This study evaluates the capacity of a bread enriched with fermentable dietary fibres to modulate the metabolism and nutrients handling between tissues, gut and peripheral, in a context of overfeeding. Net fluxes of glucose, lactate, urea, short chain fatty acids (SCFA), and amino acids were recorded in control and overfed female mini-pigs supplemented or not with fibre-enriched bread. SCFA in fecal water and gene expressions, but not protein levels or metabolic fluxes, were measured in muscle, adipose tissue, and intestine. Fibre supplementation increased the potential for fatty acid oxidation and mitochondrial activity in muscle (acox, ucp2, sdha and cpt1-m, p < 0.05) as well as main regulatory transcription factors of metabolic activity such as pparα, pgc-1α and nrf2. All these features were associated with a reduced muscle fibre cross sectional area, resembling to controls (i.e., lean phenotype). SCFA may be direct inducers of these cross-talk alterations, as their feces content (+52%, p = 0.05) was increased in fibre-supplemented mini-pigs. The SCFA effects could be mediated at the gut level by an increased production of incretins (increased gcg mRNA, p < 0.05) and an up-regulation of SCFA receptors (increased gpr41 mRNA, p < 0.01). Hence, consumption of supplemented bread with fermentable fibres can be an appropriate strategy to activate muscle energy catabolism and limit the establishment of an obese phenotype.


Assuntos
Tecido Adiposo/metabolismo , Fibras na Dieta/administração & dosagem , Metabolismo Energético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Hipernutrição/metabolismo , Aminoácidos/metabolismo , Animais , Pão , Suplementos Nutricionais , Modelos Animais de Doenças , Ácidos Graxos Voláteis/metabolismo , Fezes/química , Feminino , Alimentos Fermentados , Glucose/metabolismo , Incretinas/metabolismo , Intestinos/metabolismo , Ácido Láctico/metabolismo , Suínos , Porco Miniatura , Ureia/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-31747539

RESUMO

Rheumatoid arthritis (RA) has a negative impact on muscle mass, and reduces patient's mobility and autonomy. Furthermore, RA is associated with metabolic comorbidities, notably in lipid homeostasis by unknown mechanisms. To understand the links between the loss in muscle mass and the metabolic abnormalities, arthritis was induced in male Sprague Dawley rats (n = 11) using the collagen-induced arthritis model. Rats immunized with bovine type II collagen were compared to a control group of animals (n = 11) injected with acetic acid and complete Freund's adjuvant. The clinical severity of the ensuing arthritis was evaluated weekly by a semi-quantitative score. Skeletal muscles from the hind limb were used for the histological analysis and exploration of mitochondrial activity, lipid accumulation, metabolism and regenerative capacities. A significant atrophy in tibialis anterior muscle fibers was observed in the arthritic rats despite a non-significant decrease in the weight of the muscles. Despite moderate inflammation, accumulation of triglycerides (P < 0.05), reduced mitochondrial DNA copy number (P < 0.05) and non-significant dysfunction in mitochondrial cytochrome c oxidase activity were found in the gastrocnemius muscle. Concomitantly, our results suggested an activation of the muscle specific E3 ubiquitin ligases MuRF-1 and MAFbx. Finally, the adipose tissue from the arthritic rats exhibited decreased PPARγ mRNA suggesting reduced adipogenic capacities. In conclusion, the reduced adipose tissue adipogenic capacity and skeletal muscle mitochondrial capacity are probably involved in the activation of protein catabolism, inhibition of myogenesis, accumulation of lipids and fiber atrophy in the skeletal muscle during RA.


Assuntos
Artrite Experimental/complicações , Artrite Reumatoide/complicações , Mitocôndrias/patologia , Atrofia Muscular/metabolismo , Triglicerídeos/metabolismo , Tecido Adiposo/metabolismo , Animais , Artrite Experimental/imunologia , Artrite Experimental/metabolismo , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Colágeno Tipo II/administração & dosagem , Colágeno Tipo II/imunologia , Adjuvante de Freund/administração & dosagem , Adjuvante de Freund/imunologia , Humanos , Masculino , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Proteínas Musculares/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , PPAR gama/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
20.
Curr Opin Clin Nutr Metab Care ; 12(1): 37-41, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19057185

RESUMO

PURPOSE OF REVIEW: To understand age-related changes in proteolysis and apoptosis in skeletal muscle in relation to oxidative stress and mitochondrial alterations. RECENT FINDINGS: During aging, a progressive loss of muscle mass (sarcopenia) has been described in both human and rodents. Sarcopenia is attributable to an imbalance between protein synthesis and degradation or between apoptosis and regeneration processes or both. Major age-dependent alterations in muscle proteolysis are a lack of responsiveness of the ubiquitin-proteasome-dependent proteolytic pathway to anabolic and catabolic stimuli and alterations in the regulation of autophagy. In addition, increased oxidative stress leads to the accumulation of damaged proteins, which are not properly eliminated, aggregate, and in turn impair proteolytic activities. Finally, the mitochondria-associated apoptotic pathway may be activated. These age-induced changes may contribute to sarcopenia and decreased ability of old individuals to recover from stress. SUMMARY: Alterations in proteasome-dependent or lysosomal proteolysis, increased oxidative stress, mitochondrial dysfunction, and apoptosis presumably contribute to the development of sarcopenia.


Assuntos
Envelhecimento/fisiologia , Apoptose/fisiologia , Mitocôndrias/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Idoso , Animais , Cálcio/metabolismo , Humanos , Hidrólise , Lisossomos/metabolismo , Redes e Vias Metabólicas , Estresse Oxidativo/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA