Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cell Tissue Res ; 395(3): 313-326, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38240845

RESUMO

Mosquitoes are significant vectors of various pathogens. Unlike vertebrates, insects rely solely on innate immunity. Hemocytes play a crucial role in the cellular part of the innate immune system. The gaseous radical nitric oxide (NO) produced by hemocytes acts against pathogens and also functions as a versatile transmitter in both the immune and nervous systems, utilizing cyclic guanosine monophosphate (cGMP) as a second messenger. This study conducted a parallel comparison of NO synthase (NOS) expression and NO production in hemocytes during Escherichia coli K12 infection in four vector species: Aedes aegypti, Aedes albopictus, Culex pipiens molestus, and Culex pipiens quinquefasciatus. Increased NOS expression by NADPH diaphorase (NADPHd) staining and NO production by immunofluorescence against the by-product L-citrulline were observed in infected mosquito hemocytes distributed throughout the abdomens. NADPHd activity and citrulline labeling were particularly found in periostial hemocytes near the heart, but also on the ventral nerve chord (VNC). Pericardial cells of Ae. aegypti and Cx. p. molestus showed increased citrulline immunofluorescence, suggesting their involvement in the immune response. Oenocytes displayed strong NADPHd and citrulline labeling independent of infection status. This comparative study, consistent with findings in other species, suggests a widespread phenomenon of NO's role in hemocyte responses during E. coli infection. Found differences within and between genera highlight the importance of species-specific investigations.


Assuntos
Aedes , Culex , Animais , Óxido Nítrico , Hemócitos , Citrulina , Escherichia coli , Mosquitos Vetores
2.
Vox Sang ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38699884

RESUMO

BACKGROUND AND OBJECTIVES: West Nile virus (WNV) and Usutu virus (USUV) are mosquito-borne flaviviruses (Flaviviridae) that originated in Africa, have expanded their geographical range during the last decades and caused documented infections in Europe in the last years. Acute WNV and USUV infections have been detected in asymptomatic blood donors by nucleic acid testing. Thus, inactivation of both viral pathogens before blood transfusion is necessary to ensure blood product safety. This study aimed to investigate the efficacy of the THERAFLEX UV-Platelets system to inactivate WNV and USUV in platelet concentrates (PCs). MATERIALS AND METHODS: Plasma-reduced PCs were spiked with the virus suspension. Spiked PC samples were taken after spiking (load and hold sample) and after UVC illumination on the Macotronic UV illumination machine with different light doses (0.05, 0.1, 0.15 and 0.2 (standard) J/cm2). Virus loads of WNV and USUV before and after illumination were measured by titration. RESULTS: Infectivity assays showed that UVC illumination inactivated WNV and USUV in a dose-dependent manner. At a UVC dose of 0.2 J/cm2, the WNV titre was reduced by a log10 factor of 3.59 ± 0.43 for NY99 (lineage 1) and 4.40 ± 0.29 for strain ED-I-33/18 (lineage 2). USUV titres were reduced at the same UVC dose by a log10 factor of 5.20 ± 0.70. CONCLUSIONS: Our results demonstrate that the THERAFLEX UV-Platelets procedure is an effective technology to inactivate WNV and USUV in contaminated PCs.

3.
Vet Pathol ; 59(5): 836-849, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35400259

RESUMO

Insects play an important role in ecosystems. Changes in their abundance and biodiversity are of paramount interest, as there has not only been an alarming decline of insects important for ecosystem health throughout the past decades, but also an increase in insects detrimental for biomes. Furthermore, insects pose a threat to modern society as arbovirus-transmitting vectors. Therefore, detailed knowledge of insect staining characteristics could be beneficial as a basis for further studies, whether in the context of species conservation or control of insect pests. Thus, this study compared 14 histochemical stains for their usefulness in insects regarding nervous tissue, connective tissue components, mucins and polysaccharides, mineralization, and microorganisms. The study used formalin-fixed paraffin-embedded tissue sections of mammals (Equus caballus) and 2 dipterans (Culex pipiens biotype molestus, Drosophila melanogaster). Several histochemical stains were suitable for tissue assessment in insects and mammals, in particular for nervous tissue (Bielschowsky silver stain, luxol fast blue-cresyl violet) and polysaccharides (alcian blue, periodic acid-Schiff with and without diastase treatment, toluidine blue). Other stains proved useful for visualization of insect-specific organ characteristics such as Gomori's reticulin stain for tracheoles in both dipteran species, Heidenhain's azan for midgut-associated connective tissue, and von Kossa for mineral deposition in Malpighian tubules of C. pipiens biotype molestus. In summary, this study provides comparable insights into histochemical procedures in mammals and insects and their usefulness for histological assessment of C. pipiens biotype molestus and D. melanogaster.


Assuntos
Culex , Animais , Culex/fisiologia , Drosophila melanogaster , Ecossistema , Cavalos , Mamíferos , Mosquitos Vetores , Coloração e Rotulagem/veterinária
4.
Int J Mol Sci ; 23(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35328665

RESUMO

Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus endemic to Africa and the Arabian Peninsula, which causes diseases in humans and livestock. C-type lectin receptors (CLRs) represent a superfamily of pattern recognition receptors that were reported to interact with diverse viruses and contribute to antiviral immune responses but may also act as attachment factors or entry receptors in diverse species. Human DC-SIGN and L-SIGN are known to interact with RVFV and to facilitate viral host cell entry, but the roles of further host and vector CLRs are still unknown. In this study, we present a CLR-Fc fusion protein library to screen RVFV-CLR interaction in a cross-species approach and identified novel murine, ovine, and Aedes aegypti RVFV candidate receptors. Furthermore, cross-species CLR binding studies enabled observations of the differences and similarities in binding preferences of RVFV between mammalian CLR homologues, as well as more distant vector/host CLRs.


Assuntos
Aedes , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Humanos , Lectinas Tipo C/genética , Mamíferos , Camundongos , Mosquitos Vetores/genética , Ovinos
5.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293352

RESUMO

Rift Valley fever (RVF) is a zoonotic and emerging disease, caused by the RVF virus (RVFV). In ruminants, it leads to "abortion storms" and enhanced mortality rates in young animals, whereas in humans it can cause symptoms like severe hemorrhagic fever or encephalitis. The role of the innate and adaptive immune response in disease initiation and progression is still poorly defined. The present study used the attenuated RVFV strain clone 13 to investigate viral spread, tissue tropism, and histopathological lesions after intranasal infection in C57BL/6 wild type (WT) and type I interferon (IFN-I) receptor I knockout (IFNAR-/-) mice. In WT mice, 104 PFU RVFV (high dose) resulted in a fatal encephalitis, but no hepatitis 7-11 days post infection (dpi), whereas 103 PFU RVFV (low dose) did not cause clinical disease or significant histopathological lesions in liver and the central nervous system (CNS). In contrast, IFNAR-/- mice infected with 103 PFU RVFV developed hepatocellular necrosis resulting in death at 2-5 dpi and lacked encephalitis. These results show that IFNAR signaling prevents systemic spread of the attenuated RVFV strain clone 13, but not the dissemination to the CNS and subsequent fatal disease. Consequently, neurotropic viruses may be able to evade antiviral IFN-I signaling pathways by using the transneuronal instead of the hematogenous route.


Assuntos
Carcinoma Hepatocelular , Encefalite , Interferon Tipo I , Neoplasias Hepáticas , Vírus da Febre do Vale do Rift , Humanos , Animais , Camundongos , Vírus da Febre do Vale do Rift/genética , Receptor de Interferon alfa e beta/genética , Camundongos Endogâmicos C57BL , Antivirais , Necrose
6.
BMC Genomics ; 19(1): 530, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30001706

RESUMO

BACKGROUND: Infections with the West Nile virus (WNV) can attack neurological tissues in the host and alter gene expression levels therein. Several individual studies have analyzed these changes in the transcriptome based on measurements with DNA microarrays. Individual microarray studies produce a high-dimensional data structure with the number of studied genes exceeding the available sample size by far. Therefore, the level of scientific evidence of these studies is rather low and results can remain uncertain. Furthermore, the individual studies concentrate on different types of tissues or different time points after infection. A general statement regarding the transcriptional changes through WNV infection in neurological tissues is therefore hard to make. We screened public databases for transcriptome expression studies related to WNV infections and used different analysis pipelines to perform meta-analyses of these data with the goal of obtaining more stable results and increasing the level of evidence. RESULTS: We generated new lists of genes differentially expressed between WNV infected neurological tissues and control samples. A comparison with these genes to findings of a meta-analysis of immunological tissues is performed to figure out tissue-specific differences. While 5.879 genes were identified exclusively in the neurological tissues, 15 genes were found exclusively in the immunological tissues, and 44 genes were commonly detected in both tissues. Most findings of the original studies could be confirmed by the meta-analysis with a higher statistical power, but some genes and GO terms related to WNV were newly detected, too. In addition, we identified gene ontology terms related to certain infection processes, which are significantly enriched among the differentially expressed genes. In the neurological tissues, 17 gene ontology terms were found significantly different, and 2 terms in the immunological tissues. CONCLUSIONS: A critical discussion of our findings shows benefits but also limitations of the meta-analytic approach. In summary, the produced gene lists, identified gene ontology terms and network reconstructions appear to be more reliable than the results from the individual studies. Our meta-analysis provides a basis for further research on the transcriptional mechanisms by WNV infections in neurological tissues.


Assuntos
Neurônios/metabolismo , Transcriptoma , Animais , Bases de Dados Genéticas , Sistema Imunitário/metabolismo , Sistema Imunitário/virologia , Neurônios/virologia , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Componente Principal , Febre do Nilo Ocidental/patologia , Febre do Nilo Ocidental/veterinária , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/patogenicidade
7.
J Gen Virol ; 99(12): 1739-1745, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30394867

RESUMO

Many insect cell lines are persistently infected with insect-specific viruses (ISV) often unrecognized by the scientific community. Considering recent findings showing the possibility of interference between arbovirus and ISV infections, it is important to pay attention to ISV-infected cell lines. One example is the Entomobirnavirus, Culex Y virus (CYV). Here we describe the detection of CYV using a combination of small RNA sequencing, electron microscopy and PCR in mosquito cell lines Aag2, U4.4 and C7-10. We found CYV-specific small RNAs in all three cell lines. Interestingly, the magnitude of the detected viral RNA genome is variable among cell passages and leads to irregular detection via electron microscopy. Gaining insights into the presence of persistent ISV infection in commonly used mosquito cells and their interactions with the host immune system is beneficial for evaluating the outcome of co-infections with arboviruses of public health concern.


Assuntos
Birnaviridae/crescimento & desenvolvimento , Birnaviridae/isolamento & purificação , Culicidae/virologia , Pequeno RNA não Traduzido/análise , Animais , Linhagem Celular , Perfilação da Expressão Gênica , Microscopia Eletrônica , Reação em Cadeia da Polimerase , Pequeno RNA não Traduzido/genética , Análise de Sequência de DNA
8.
Parasitol Res ; 113(9): 3195-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24948103

RESUMO

The interplay between arthropod-borne (arbo) viruses and their vectors is usually complex and often exert unique relationships. Aedes japonicus japonicus (Hulecoeteomyia japonica or Ochlerotatus japonicus japonicus), an invasive mosquito species with laboratory proven vector competence for a number of emerging viruses has been newly introduced to Germany and is currently expanding its range throughout the country. On the other hand, West Nile virus (WNV), an emerging arbovirus originating from Africa, is already circulating in several European countries and might soon be introduced to Germany. Because newly introduced and rapidly expanding vector species pose a potential risk for public health in Germany, we assessed the vectorial capacity of German Ae. j. japonicus populations for WNV and Japanese encephalitis virus (JEV). The results indicate that German Ae. j. japonicus are susceptible for JEV but are refractory to infection with WNV. Of 67 Ae. j. japonicus females challenged by feeding of WNV-containing blood, none had measurable amounts of WNV-RNA (0% infection rate) on day 14 post-infection. In contrast, all females challenged with JEV were positive for JEV-RNA (100% infection rate) on day 14 post-infection. The reason for WNV resistance remains to be determined but is independent from co-infection with other flaviviruses or the presence of endosymbiotic Wolbachia, since we found no evidence for other flavivirus infections within 1,033 tested A. j. japonicus females from the sampling region, nor detectable Wolbachia infection within 30 randomly selected individuals.


Assuntos
Aedes/virologia , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Insetos Vetores/virologia , Vírus do Nilo Ocidental/fisiologia , Animais , Coinfecção , Culex/virologia , Comportamento Alimentar , Feminino , Alemanha , Humanos
9.
Parasitol Res ; 113(9): 3201-10, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25056941

RESUMO

In recent years, the number of imported cases of arthropod-borne diseases in Europe, such as dengue fever, has increased steadily, as did the emergence and distribution of invasive insect vectors. Consequently, the risk of disease spreading into previously unaffected regions through invasive mosquitoes is also increasing. One example of an invasive mosquito is Aedes japonicus japonicus (A. j. japonicus), which spread from its original habitat in Japan to North America and Europe. This species has been shown to act as a vector for Japanese encephalitis and West Nile viruses. In Europe, A. j. japonicus has been detected in Switzerland, Belgium, Slovenia, and Germany, where it has become a resident species. Here, we describe the recent spread and genetic structure of A. j. japonicus populations in Germany. By monitoring the species in Baden-Württemberg in 2011 and 2012, we observed a considerable enlargement of the infested area from 54 municipalities in 2011 to 124 municipalities in 2012. To elucidate the colonization of Europe by A. j. japonicus, seven microsatellite loci were studied in 106 individuals sampled in Germany and Switzerland in 2012. The same markers were genotyped in 31 North American and 26 Japanese specimens. Population genetic analyses indicated that A. j. japonicus in Baden-Württemberg and North Rhine-Westphalia represented two genetically distinct populations with FST-values of 0.073-0.152, suggesting that they originated from two independent introduction events in the past. These results are of particular interest in light of vectorial variability for the transmission of viruses and other pathogens in Europe.


Assuntos
Aedes/genética , Aedes/fisiologia , Repetições de Microssatélites/genética , Animais , Demografia , Alemanha
10.
Pathogens ; 12(4)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37111444

RESUMO

In blood-feeding dipterans, olfaction plays a role in finding hosts and, hence, in spreading pathogens. Several pathogens are known to alter olfactory responses and behavior in vectors. As a mosquito-borne pathogen, Rift Valley Fever Virus (RVFV) can affect humans and cause great losses in livestock. We test the influence of RVFV infection on sensory perception, olfactory choice behavior and activity on a non-biting insect, Drosophila melanogaster, using electroantennograms (EAG), Y-maze, and locomotor activity monitor. Flies were injected with RVFV MP12 strain. Replication of RVFV and its persistence for at least seven days was confirmed by quantitative reverse transcription-PCR (RT-qPCR). One day post injection, infected flies showed weaker EAG responses towards 1-hexanol, vinegar, and ethyl acetate. In the Y-maze, infected flies showed a significantly lower response for 1-hexanol compared to uninfected flies. At days six or seven post infection, no significant difference between infected and control flies could be found in EAG or Y-maze anymore. Activity of infected flies was reduced at both time points. We found an upregulation of the immune-response gene, nitric oxide synthase, in infected flies. An infection with RVFV is able to transiently reduce olfactory perception and attraction towards food-related odors in Drosophila, while effects on activity and immune effector gene expression persist. A similar effect in blood-feeding insects could affect vector competence in RVFV transmitting dipterans.

11.
Viruses ; 15(1)2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36680275

RESUMO

Mosquitoes are vectors of various pathogens that cause diseases in humans and animals. To prevent the outbreak of mosquito-borne diseases, it is essential to control vector populations, as treatment or vaccination for mosquito-borne diseases are often unavailable. Insect-specific viruses (ISVs) have previously been described as being potentially helpful against arboviral disease outbreaks. In this study, we present the first in vivo characterization of the ISV Culex Y virus (CYV). CYV was first isolated from free-living Culex pipiens mosquitoes in 2010; then, it was found in several mosquito cell lines in a further study in 2018. For mammalian cells, we were able to confirm that CYV does not replicate as it was previously described. Additionally, we found that CYV does not replicate in honey bees or locusts. However, we detected replication in the Culex pipiens biotype molestus, Aedes albopictus, and Drosophila melanogaster, thus indicating dipteran specificity. We detected significantly higher mortality in Culex pipiens biotype molestus males and Drosophila melanogaster, but not in Aedes albopictus and female Culex pipiens biotype molestus. CYV could not be transmitted transovarially to offspring, but we detected venereal transmission as well as CYV in mosquitos' saliva, indicating that an oral route of infection would also be possible. CYV's dipteran specificity, transmission routes, and killing effect with respect to Culex males may be used as powerful tools with which to destabilize arbovirus vector populations in the future.


Assuntos
Aedes , Infecções por Arbovirus , Arbovírus , Birnaviridae , Culex , Humanos , Masculino , Feminino , Animais , Mosquitos Vetores , Drosophila melanogaster , Mamíferos
12.
Microorganisms ; 12(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276174

RESUMO

Arboviruses represent a real public health problem globally and in the Central African subregion in particular, which represents a high-risk zone for the emergence and re-emergence of arbovirus outbreaks. Furthermore, an updated review on the current arbovirus burden and associated mosquito vectors is lacking for this region. To contribute to filling this knowledge gap, the current study was designed with the following objectives: (i) to systematically review data on the occurrence and distribution of arboviruses and mosquito fauna; and (ii) to identify potential spillover mosquito species in the Central African region in the last 30 years. A web search enabled the documentation of 2454 articles from different online databases. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) and the quality of reporting of meta-analyses (QUORUM) steps for a systematic review enabled the selection of 164 articles that fulfilled our selection criteria. Of the six arboviruses (dengue virus (DENV), chikungunya virus (CHIKV), yellow fever virus (YFV), Zika virus (ZIKV), Rift Valley fever virus (RVFV), and West Nile virus (WNV)) of public health concern studied, the most frequently reported were chikungunya and dengue. The entomological records showed >248 species of mosquitoes regrouped under 15 genera, with Anopheles (n = 100 species), Culex (n = 56 species), and Aedes (n = 52 species) having high species diversity. Three genera were rarely represented, with only one species included, namely, Orthopodomyia, Lutzia, and Verrallina, but individuals of the genera Toxorhinchites and Finlayas were not identified at the species level. We found that two Aedes species (Ae. aegypti and Ae. albopictus) colonised the same microhabitat and were involved in major epidemics of the six medically important arboviruses, and other less-frequently identified mosquito genera consisted of competent species and were associated with outbreaks of medical and zoonotic arboviruses. The present study reveals a high species richness of competent mosquito vectors that could lead to the spillover of medically important arboviruses in the region. Although epidemiological studies were found, they were not regularly documented, and this also applies to vector competence and transmission studies. Future studies will consider unpublished information in dissertations and technical reports from different countries to allow their information to be more consistent. A regional project, entitled "Ecology of Arboviruses" (EcoVir), is underway in three countries (Gabon, Benin, and Cote d'Ivoire) to generate a more comprehensive epidemiological and entomological data on this topic.

13.
Microorganisms ; 11(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36985117

RESUMO

The newly discovered group of Jingmenviruses has been shown to infect a wide range of hosts and has been associated with febrile illness in humans. During a survey for Jingmenviruses in ticks from Lower Saxony, Germany, Alongshan virus (ALSV) was identified in Ixodes spp. ticks. Additional virus screenings revealed the presence of ALSV in the bodies and saliva of ticks collected at several locations in Lower Saxony. Vector competence studies that included Ixodes ricinus and Dermacentor reticulatus validated the replication of ALSV within those tick species. In vitro feeding experiments with ALSV-injected Ixodes ricinus demonstrated effective viral transmission during blood feeding. To evaluate the potential viral transmission during a natural blood meal, sera from wild game and domestic animals were investigated. One serum sample from a red deer was found to be positive for ALSV RNA, while serological screenings in game and domestic animals revealed the presence of ALSV-specific antibodies at different locations in Lower Saxony. Overall, those results demonstrate the broad distribution of ALSV in ticks in Lower Saxony and hypothesize frequent exposure to animals based on serological investigations. Hence, its potential risk to human and animal health requires further investigation.

14.
Insects ; 13(11)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36354817

RESUMO

Mosquitoes are the most important vector of arboviruses; thus, controlling mosquito population is a key point for controlling these diseases. Two major factors that influence mosquito population size are the availability of blood hosts and suitable oviposition sites. Behavioral mechanisms by which Culex pipiens biotype molestus mosquitoes locate their hosts or oviposition sites are influenced by physical and chemical factors. The present study evaluated the impact of the colors (for human eyes) red, green, blue and yellow in combination with different light intensities on preferences for oviposition and foraging sites under laboratory conditions. We identified the color red as the overall favored color for both target behaviors, which was only surpassed by black as the foraging stimulus. Altogether, we described two new inexpensive and simple bioassays, which can be used as a mosquito-tracking method for behavioral tests and as an oviposition trap to monitor Culex pipiens biotype molestus populations.

15.
Biology (Basel) ; 11(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35053056

RESUMO

Arthropod-borne diseases represent one of the greatest infection-related threats as a result of climate change and globalization. Repeatedly, arbovirus-infected mosquitoes show behavioral changes whose underlying mechanisms are still largely unknown, but might help to develop control strategies. However, in contrast to well-characterized insects such as fruit flies, little is known about neuroanatomy and neurotransmission in mosquitoes. To overcome this limitation, the study focuses on the immunohistochemical characterization of the nervous system of Culex pipiens biotype molestus in comparison to Drosophila melanogaster using 13 antibodies labeling nervous tissue, neurotransmitters or neurotransmitter-related enzymes. Antibodies directed against γ-aminobutyric acid, serotonin, tyrosine-hydroxylase and glutamine synthetase were suitable for investigations in Culex pipiens and Drosophila melanogaster, albeit species-specific spatial differences were observed. Likewise, similar staining results were achieved for neuronal glycoproteins, axons, dendrites and synaptic zones in both species. Interestingly, anti-phosphosynapsin and anti-gephyrin appear to represent novel markers for synapses and glial cells, respectively. In contrast, antibodies directed against acetylcholine, choline acetyltransferase, elav and repo failed to produce a signal in Culex pipiens comparable to that in Drosophila melanogaster. In summary, present results enable a detailed investigation of the nervous system of mosquitoes, facilitating further studies of behavioral mechanisms associated with arboviruses in the course of vector research.

16.
J Med Entomol ; 58(2): 983-989, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33710313

RESUMO

Madagascar is a hotspot of biodiversity, but poverty and population growth provoke a high risk of conflict between food security and biodiversity conservation in this tropical country. Numerous vector-borne diseases, including viral infections, affect public health in Madagascar and a continuous expansion of anthropogenically used areas intensifies contact on the human-wildlife interface. However, data on human and animal pathogens in potential insect vectors is limited. Therefore, we conducted a parasitological and virological survey of 785 adult female mosquitoes between March and May 2016 at the Ankarafantsika National Park in northwestern Madagascar. Screening included Alpha-, Phlebo-, and Flaviviridae and the recently described filarial nematode species, Lemurfilaria lemuris. The predominant mosquito genus was Culex (91%), followed by Mansonia (4.1%), Anopheles (3.4%), and Aedes (0.9%). Viral screening revealed no arboviruses, but an insect-specific flavivirus in two Culex sitiens pools. No pools screened positive for the lemur-specific filarial nematode L. lemuris.


Assuntos
Flavivirus/isolamento & purificação , Mosquitos Vetores , Nematoides/isolamento & purificação , Aedes/parasitologia , Aedes/virologia , Animais , Anopheles/parasitologia , Anopheles/virologia , Biodiversidade , Culex/parasitologia , Culex/virologia , Reservatórios de Doenças , Filariose/transmissão , Lemur , Madagáscar , Mosquitos Vetores/parasitologia , Mosquitos Vetores/virologia , Viroses/transmissão
17.
Insects ; 12(10)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34680720

RESUMO

Similar to vertebrates, insects are exposed to a broad variety of pathogens. The innate insect immune system provides several response mechanisms such as phagocytosis, melanization, and the synthesis of antimicrobial or cytotoxic compounds. The cytotoxic nitric oxide (NO), which is also a neurotransmitter, is involved in the response to bacterial infections in various insects but has rarely been shown to be actually produced in hemocytes. We quantified the NO production in hemocytes of Locusta migratoria challenged with diverse immune stimuli by immunolabeling the by-product of NO synthesis, citrulline. Whereas in untreated adult locusts less than 5% of circulating hemocytes were citrulline-positive, the proportion rose to over 40% after 24 hours post injection of heat-inactivated bacteria. Hemocytes surrounded and melanized bacteria in locust nymphs by forming capsules. Such sessile hemocytes also produced NO. As in other insect species, activated hemocytes were found dorsally, close to the heart. In addition, we frequently observed citrulline-positive hemocytes and capsules near the ventral nerve cord. Neurites in the CNS of sterile locust embryos responded with elevation of the second messenger cGMP after contact with purified adult NO-producing hemocytes as revealed by immunofluorescence. We suggest that hemocytes can mediate a response in the CNS of an infected animal via the NO/cGMP signaling pathway.

18.
Microorganisms ; 9(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477924

RESUMO

Tick-borne encephalitis virus (TBEV), like other arthropod-transmitted viruses, depends on specific vectors to complete its enzootic cycle. It has been long known that Ixodes ricinus ticks constitute the main vector for TBEV in Europe. In contrast to the wide distribution of the TBEV vector, the occurrence of TBEV transmission is focal and often restricted to a small parcel of land, whereas surrounding areas with seemingly similar habitat parameters are free of TBEV. Thus, the question arises which factors shape this focal distribution of TBEV in the natural habitat. To shed light on factors driving TBEV-focus formation, we used tick populations from two TBEV-foci in Lower Saxony and two TBEV-foci from Bavaria with their respective virus isolates as a showcase to analyze the impact of specific virus isolate-tick population relationships. Using artificial blood feeding and field-collected nymphal ticks as experimental means, our investigation showed that the probability of getting infected with the synonymous TBEV isolate as compared to the nonsynonymous TBEV isolate was elevated but significantly higher only in one of the four TBEV foci. More obviously, median viral RNA copy numbers were significantly higher in the synonymous virus-tick population pairings. These findings may present a hint for a coevolutionary adaptation of virus and tick populations.

19.
Viruses ; 13(9)2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34578285

RESUMO

Reassortment is a viral genome-segment recomposition known for many viruses, including the orthobunyaviruses. The co-infection of a host cell with two viruses of the same serogroup, such as the Bunyamwera orthobunyavirus and the Batai orthobunyavirus, can give rise to novel viruses. One example is the Ngari virus, which has caused major outbreaks of human infections in Central Africa. This study aimed to investigate the potential for reassortment of Bunyamwera orthobunyavirus and the Batai orthobunyavirus during co-infection studies and the replication properties of the reassortants in different mammalian and insect cell lines. In the co-infection studies, a Ngari-like virus reassortant and a novel reassortant virus, the Batunya virus, arose in BHK-21 cells (Mesocricetus auratus). In contrast, no reassortment was observed in the examined insect cells from Aedes aegypti (Aag2) and Aedes albopictus (U4.4 and C6/36). The growth kinetic experiments show that both reassortants are replicated to higher titers in some mammalian cell lines than the parental viruses but show impaired growth in insect cell lines.


Assuntos
Aedes/citologia , Vírus Bunyamwera/genética , Genoma Viral , Mamíferos/virologia , Orthobunyavirus/genética , RNA Viral/genética , Vírus Reordenados/genética , Aedes/virologia , Animais , Vírus Bunyamwera/isolamento & purificação , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Orthobunyavirus/isolamento & purificação , Filogenia , Vírus Reordenados/isolamento & purificação , Células Vero
20.
Microorganisms ; 9(4)2021 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-33919617

RESUMO

Tick-borne encephalitis (TBE) is a severe neurologic disease in Europe and Asia. Disease expression ranges from asymptomatic to severe neurological clinical pictures, involving meningitis, encephalitis, meningoencephalitis and potentially fatal outcome. Humans mostly become infected with TBE virus (TBEV) by the bite of an infected tick. Gastrointestinal (GI) symptoms in humans are mainly attributed to the first viremic phase of TBEV infection with unspecific symptoms and/or resulting from severe neurological impairment of the central nervous system (CNS). We used the subcutaneous TBEV-infection of C57BL/6 mice as a model to analyze GI complications of TBE. We observed the acute distension and segmental dilation of the intestinal tract in 10 of 22 subcutaneously infected mice. Histological analysis revealed an intramural enteric ganglioneuritis in the myenteric and submucosal plexus of the small and large intestine. The numbers of infiltrating macrophages and CD3+ T lymphocytes correlated with the severity of ganglioneuritis, indicating an immune-mediated pathogenesis due to TBEV-infection of the enteric plexus. Our study demonstrates that the inflammation of enteric intramural ganglia presents to be a common feature in TBEV-infected mice. Accordingly, the results of this mouse model emphasize that GI disease manifestation and consequences for long-term sequelae should not be neglected for TBEV-infections in humans and require further investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA