Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Arch Virol ; 167(12): 2591-2600, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36098800

RESUMO

Solenopsis invicta virus 4 (SINV-4), a new polycipivirus, was characterized in the host in which it was discovered, Solenopsis invicta. SINV-4 was detected in the worker and larval stages of S. invicta, but not in pupae, male or female alates, or queens. The SINV-4 titer was highest in worker ants, with a mean of 1.14 × 107 ± 5.84 ×107 SINV-4 genome equivalents/ng RNA. Electron microscopic examination of negatively stained samples from particles purified from SINV-4-infected fire ant workers revealed isometric particles with a mean diameter of 47.3 ± 1.4 nm. The mean inter-colony SINV-4 infection rate among S. invicta worker ants was 45.8 ± 38.6 in Alachua County, Florida. In S. invicta collected in Argentina, SINV-4 was detected in 22% of 54 colonies surveyed from across the Formosa region. There did not appear to be any seasonality associated with the SINV-4 infection rate among S. invicta nests. SINV-4 was successfully transmitted to uninfected S. invicta colonies by feeding. Among three colonies of S. invicta inoculated with SINV-4, two retained the infection for up to 72 days. The replicative genome strand of SINV-4 was detected in 18% (n = 11) of SINV-4-infected S. invicta colonies. Among 33 ant species examined, the plus genome strand of SINV-4 was detected in undetermined species of Dorymyrmex and Pheidole, Cyphomyrmex rimosus, Monomorium pharaonis, Pheidole obscurithorax, Solenopsis geminata, Solenopsis richteri, Solenopsis xyloni, and Solenopsis invicta. However, the replicative (minus) genome strand was only detected in S. invicta. SINV-4 infection did not impact brood production or queen fecundity in S. invicta. The mean brood rating (63.3% ± 8.8) after 31 days for SINV-4-infected colonies was not statistically different from that of uninfected colonies (48.3 ± 25.5). At the end of the 31-day test period, mean egg production was not significantly different between SINV-4-infected S. invicta colonies (287.7 ± 45.2 eggs laid/24 hours) and uninfected control colonies (193.0 ± 43.6 eggs laid/24 hours).


Assuntos
Formigas , Vírus de RNA , Animais , Feminino , Masculino , Vírus de RNA/genética , Larva , Argentina , Florida
2.
Proc Natl Acad Sci U S A ; 115(27): E6245-E6253, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29915081

RESUMO

Microsporidia are parasitic fungi-like organisms that invade the interior of living cells and cause chronic disorders in a broad range of animals, including humans. These pathogens have the tiniest known genomes among eukaryotic species, for which they serve as a model for exploring the phenomenon of genome reduction in obligate intracellular parasites. Here we report a case study to show an apparent effect of overall genome reduction on the primary structure and activity of aminoacyl-tRNA synthetases, indispensable cellular proteins required for protein synthesis. We find that most microsporidian synthetases lack regulatory and eukaryote-specific appended domains and have a high degree of sequence variability in tRNA-binding and catalytic domains. In one synthetase, LeuRS, an apparent sequence degeneration annihilates the editing domain, a catalytic center responsible for the accurate selection of leucine for protein synthesis. Unlike accurate LeuRS synthetases from other eukaryotic species, microsporidian LeuRS is error-prone: apart from leucine, it occasionally uses its near-cognate substrates, such as norvaline, isoleucine, valine, and methionine. Mass spectrometry analysis of the microsporidium Vavraia culicis proteome reveals that nearly 6% of leucine residues are erroneously replaced by other amino acids. This remarkably high frequency of mistranslation is not limited to leucine codons and appears to be a general property of protein synthesis in microsporidian parasites. Taken together, our findings reveal that the microsporidian protein synthesis machinery is editing-deficient, and that the proteome of microsporidian parasites is more diverse than would be anticipated based on their genome sequences.


Assuntos
Aminoacil-tRNA Sintetases , Proteínas Fúngicas , Genoma Fúngico , Microsporida , Biossíntese de Proteínas/fisiologia , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Microsporida/genética , Microsporida/metabolismo , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo
3.
Molecules ; 26(4)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572261

RESUMO

Chromatographic purification of the alcoholic extract from the aerial parts of the Saudi plant Nuxia oppositifolia (Hochst.), Benth., resulted in five isolated phenolic compounds. Two flavones, hispidulin (1) and jaceosidin (2), and the phenylethanoid glycosides, verbascoside (3), isoverbascoside (4), and conandroside (5), were identified and their chemical structures were determined by spectroscopic analyses. The insecticidal activity of compounds 1 and 2, in addition to 11 compounds isolated in a previous research (6-16), was evaluated against the Yellow Fever mosquito, Aedes aegypti. Four compounds displayed adulticidal activity with LD50 values of 2-2.3 µg/mosquito. Free radical scavenging properties of the plant extracts and compounds (1-5) were evaluated by measuring the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonate radical cation (ABTS•+) scavenging activity. All compounds exhibited notable activity, compared with the positive control, l-Ascorbic acid. This study suggests that N. oppositifolia could be a promising source of secondary metabolites, some with lethal adulticidal effect against Ae. aegypti.


Assuntos
Aedes/crescimento & desenvolvimento , Antioxidantes/farmacologia , Sequestradores de Radicais Livres/farmacologia , Inseticidas/farmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Traqueófitas/química , Aedes/efeitos dos fármacos , Animais , Arábia Saudita
4.
J Invertebr Pathol ; 169: 107279, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31738888

RESUMO

The microsporidian genera Nosema and Vairimorpha comprise a clade described from insects. Currently the genus Nosema is defined as having a dimorphic life cycle characterized by diplokaryotic stages and diplosporoblastic sporogony with two functionally and morphologically distinct spore types ("early" or "primary" and "environmental"). The Vairimorpha life cycle, in addition to a Nosema-type diplokaryotic sporogony, includes an octosporoblastic sporogony producing eight uninucleate spores (octospores) within a sporophorous vesicle. Molecular phylogeny, however, has clearly demonstrated that the genera Nosema and Vairimorpha, characterized by the absence or presence of uninucleate octospores, respectively, represent two polyphyletic taxa, and that octosporogony is turned on and off frequently within taxa, depending on environmental factors such as host species and rearing temperature. In addition, recent studies have shown that both branches of the Vairimorpha-Nosema clade contain species that are uninucleate throughout their life cycle. The SSU rRNA gene sequence data reveal two distinct clades, those closely related to Vairimorpha necatrix, the type species for the genus Vairimorpha, and those closely related to Nosema bombycis, the type species for the genus Nosema. Here, we redefine the two genera, giving priority to molecular character states over those observed at the developmental, structural or ultrastructural levels and present a list of revised species designations. Using this approach, a series of species are renamed (combination novum) and members of two genera, Rugispora and Oligosporidium, are reassigned to Vairimorpha because of their phylogenetic position. Moreover, the family Nosematidae is redefined and includes the genera Nosema and Vairimorpha comprising a monophyletic lineage of Microsporidia.


Assuntos
Microsporídios/classificação , Nosema/classificação , Filogenia , Características de História de Vida , RNA Fúngico/análise , RNA Ribossômico/análise
5.
Pestic Biochem Physiol ; 161: 5-11, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31685196

RESUMO

The adulticidal, larvicidal, and repellent activity of 18 trifluoromethylphenyl amides (TFMPAs) was determined against Aedes aegypti mosquitoes. The compounds studied are the third generation designed from active structures of the previous two generations. N-(3,5-Bis(trifluoromethyl)phenyl)-2-chloroacetamide (8f) and N-(3,5-bis(trifluoromethyl)phenyl)-2,2,3,3,3-pentafluoropropanamide (8h) were most active against 1st stage Ae. aegypti larvae with LC50 values of 125 and 2.53 µM; for comparative purposes, the published LC50 for fipronil is 0.014 µM. Compound 8h was the most toxic against adult female Ae. aegypti with an LD50 = 2.12 nmol/mg, followed by 8f, and N-(3,5-bis(trifluoromethyl)phenyl)-2,2,2-trifluoroacetamide (8g) with LD50 values of 4.27 and 4.73 nmol/mg, respectively, although these compounds were significantly less toxic than fipronil against adult female Ae. aegypti. Compounds N-(2-(trifluoromethyl)phenyl)butyramide (9c), N-(2-(trifluoromethyl)phenyl)pentanamide (9d) and N-(2-(trifluoromethyl)phenyl)hex-5-enamide (9e) were the best repellents for female Ae. aegypti, with minimum effective dosages (MEDs) of 0.026, 0.052, and 0.091 µmol/cm2, respectively, compared to DEET at 0.052 µmol/cm2. Out of 52 TFMPAs (total number of compounds from three generations of this research) compound 9c was the most active repellent along with two synthesized in our previous studies, 2-chloro-N-(3-(trifluoromethyl)phenyl)acetamide (6a) and 2,2,2-trifluoro-N-(2-(trifluoromethyl)phenyl)acetamide (4c).


Assuntos
Aedes/efeitos dos fármacos , Amidas/farmacologia , Repelentes de Insetos/farmacologia , Inseticidas/farmacologia , Aedes/embriologia , Animais , Bioensaio , Relação Dose-Resposta a Droga , Repelentes de Insetos/administração & dosagem , Repelentes de Insetos/química , Inseticidas/administração & dosagem , Inseticidas/química , Larva/efeitos dos fármacos , Relação Estrutura-Atividade
6.
Saudi Pharm J ; 27(6): 877-881, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31516330

RESUMO

Stachys tmolea subsp. tmolea Boiss. is endemic to Turkey and is a species of the genus Stachys L. which is one of the largest genera of the family Lamiaceae with about 300 species. The aims of this study were to examine the chemical composition of the essential oil and n-hexane extract of S. tmolea subsp. tmolea as natural sources of insecticidal activity against the dengue vector, Aedes aegypti. Analysis of the essential oil by GC-FID and gas chromatography-mass spectrometry (GC-MS) systems identified hexahydrofarnesyl acetone (15%), viridiflorol (10%), hexadecanoic acid (7%) and 9-geranyl-p-cymene (6%) as major components. The volatile components of the n-hexane extract were extracted using headspace solid-phase microextraction (HS-SPME) and were analyzed using GC-MS. The principal constituents were 3,4-dimethyl decane (16%), 3-methyl-3-pentanol (15%), 2-methyl-2-pentanol (12%), 1,4-bis (1,1-dimethylethyl) benzene (12%), heptanal (10%), acetic acid (6%) and decane (4%). Bioassay of the n-hexane extract, at 5 µg/mosquito, produced 90% mortality against adult Ae. aegypti while the S. tmolea essential oil demonstrated 13% mortality. No larvicidal activity was observed both in essential oil and n-hexane extract. Further studies are needed to assess the adulticidal activity of the responsible compounds in the crude extract.

7.
Saudi Pharm J ; 27(7): 930-938, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31997899

RESUMO

As part of our continuing investigation for interesting biological activities of native medicinal plants, thirty-nine plants, obtained from diverse areas in Saudi Arabia and Yemen, were screened for insecticidal activity against yellow fever mosquito Aedes aegypti (L.). Out of the 57 organic extracts, Saussurea lappa, Ocimum tenuiflorum, Taraxacum officinale, Nigella sativa, and Hyssopus officinalis exhibited over 80% mortality against adult female Ae. aegypti at 5 µg/mosquito. In the larvicidal bioassay, the petroleum ether extract of Aloe perryi flowers showed 100% mortality at 31.25 ppm against 1st instar Ae. aegypti larvae. The ethanol extract of Saussurea lappa roots was the second most active displaying 100% mortality at 125 and 62.5 ppm. Polar active extracts were processed using LC-MS/MS to identify bioactive compounds. The apolar A. perryi flower extract was analyzed by headspace SPME-GC/MS analysis. Careful examination of the mass spectra and detailed interpretation of the fragmentation pattern allowed the identification of various biologically active secondary metabolites. Some compounds such as caffeic and quinic acid and their glycosides were detected in most of the analyzed fractions. Additionally, luteolin, luteolin glucoside, luteolin glucuronide and diglucuronide were also identified as bioactive compounds in several HPLC fractions. The volatile ketone, 6-methyl-5-hepten-2-one was identified from A. perryi petroleum ether fraction as a major compound.

8.
J Gen Virol ; 99(9): 1185-1186, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29947603

RESUMO

The family Baculoviridae comprises large viruses with circular dsDNA genomes ranging from 80 to 180 kbp. The virions consist of enveloped, rod-shaped nucleocapsids and are embedded in distinctive occlusion bodies measuring 0.15-5 µm. The occlusion bodies consist of a matrix composed of a single viral protein expressed at high levels during infection. Members of this family infect exclusively larvae of the insect orders Lepidoptera, Hymenoptera and Diptera. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Baculoviridae, which is available at www.ictv.global/report/baculoviridae.


Assuntos
Baculoviridae/classificação , Genoma Viral , Insetos/virologia , Animais , Baculoviridae/genética , Filogenia , Proteínas Virais , Replicação Viral
9.
J Eukaryot Microbiol ; 65(3): 315-330, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28984006

RESUMO

We describe a unique microsporidian species that infects the green stink bug, Chinavia hilaris; the brown marmorated stink bug, Halyomorpha halys; the brown stink bug, Euschistus servus; and the dusky stink bug, Euschistus tristigmus. All life stages are unikaryotic, but analysis of the consensus small subunit region of the ribosomal gene places this microsporidium in the genus Nosema, which historically has been characterized by diplokaryotic life stages. It is also characterized by having the reversed arrangement of the ribosomal gene (LSU -ITS- SSU) found in species within the "true Nosema" clade. This microsporidium is apparently Holarctic in distribution. It is present in H. halys both where it is native in Asia and where it is invasive in North America, as well as in samples of North American native C. hilaris collected prior to the introduction of H. halys from Asia. Prevalence in H. halys from mid-Atlantic, North America in 2015-2016 ranged from 0.0% to 28.3%, while prevalence in C. hilaris collected in Illinois in 1970-1972 ranged from 14.3% to 58.8%. Oral infectivity and pathogenicity were confirmed in H. halys and C. hilaris. Morphological, ultrastructural, and ecological features of the microsporidium, together with a molecular phylogeny, establish a new species named Nosema maddoxi sp. nov.


Assuntos
Heterópteros/microbiologia , Nosema/classificação , Nosema/isolamento & purificação , Animais , DNA Ribossômico/genética , Especificidade de Hospedeiro , América do Norte , Nosema/genética , Nosema/patogenicidade , Filogenia
10.
Pestic Biochem Physiol ; 151: 40-46, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30704711

RESUMO

This project focused on the design, synthesis, and testing of trifluoromethylphenyl amides (TFMPAs) as potential mosquitocides and repellents. Fourteen compounds were evaluated for toxicity against larvae and adults of Aedes aegypti. Several compounds were toxic against Aedes aegypti (larval, adult and feeding bioassays) and Drosophila melanogaster (glass-surface contact assay), but were much less toxic than fipronil, with toxicity ratios ranging from 100-fold in the larval assay to 100,000-fold for topical application to adult insects. In repellency bioassays to determine minimum effective dosage (MED), compound N-(2,6-dichloro-4-(trifluoromethyl)phenyl)-2,2,3,3,3-pentafluoropropanamide (7b) repelled Ae. aegypti females at lower concentration, 0.017 (±0.006) µmol/cm2, than N, N-diethyl-meta-toluamide (DEET) 0.026 (±0.005) µmol/cm2. 2-Chloro-N-(3-(trifluoromethyl)phenyl)acetamide (6a) performed better than DEET against two species of mosquitoes: it repelled Ae. aegypti females at 0.013 (±0.006) µmol/cm2 and Anopheles gambiae females (in a warm body repellent assay), at a standard exposure of 2 nmol/cm2. These studies revealed novel active structures that could further lead to compounds with better repellent activity.


Assuntos
Amidas/química , Aedes/efeitos dos fármacos , Amidas/síntese química , Amidas/farmacologia , Animais , Anopheles/efeitos dos fármacos , DEET/farmacologia , Drosophila , Repelentes de Insetos/síntese química , Repelentes de Insetos/química , Repelentes de Insetos/farmacologia , Inseticidas/síntese química , Inseticidas/química , Inseticidas/farmacologia
11.
Parasitol Res ; 116(2): 773-780, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27987055

RESUMO

This study describes a new genus and species of microsporidia which is a pathogen of the elm leaf beetle, Xanthogaleruca luteola Muller, 1776 (Coleoptera: Chrysomelidae). The beetles were collected from Istanbul in Turkey. All developmental stages are uninucleate and in direct contact with the host cell cytoplasm. Giemsa-stained mature spores are oval in shape and measured 3.40 ± 0.37 µm in length and 1.63 ± 0.20 µm in width. These uninucleate spores have an isofilar polar filament with 11 turns. The spore wall was trilaminar (75 to 115 nm) with a rugose, electron-dense exospore (34 to 45 nm) and a thickened, electron-lucent endospore (65 to 80 nm) overlaying the plasmalemma. Morphological, ultrastructural, and molecular features indicate that the described microsporidium is dissimilar to all known microsporidian taxa and confirm that it has different taxonomic characters than other microsporidia infecting X. luteola and is named here as Rugispora istanbulensis n. gen., n. sp.


Assuntos
Besouros/microbiologia , Microsporídios não Classificados/classificação , Animais , Microsporídios não Classificados/genética , Microsporídios não Classificados/isolamento & purificação , Microsporídios não Classificados/ultraestrutura , Filogenia , Folhas de Planta/parasitologia , Análise de Sequência de DNA , Esporos Fúngicos , Turquia , Ulmus/parasitologia
12.
J Med Entomol ; 53(2): 304-14, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26659858

RESUMO

Effective mosquito control is vital to curtail the devastating health effects of many vectored diseases. RNA interference (RNAi)-mediated control of mosquitoes is an attractive alternative to conventional chemical pesticides. Previous studies have suggested that transcripts for inhibitors of apoptosis (IAPs) may be good RNAi targets. To revisit and extend previous reports, we examined the expression of Aedes aegypti (L.) IAPs (AaeIAPs) 1, 2, 5, 6, 9, and a viral IAP-associated factor (vIAF) as well as Anopheles quadrimaculatus Say and Culex quinquefasciatus Say IAP1 homologs (AquIAP1 and CquIAP1) in adult females. Expression profiles of IAPs suggested that some older female mosquitoes had significantly higher IAP mRNA levels when compared to the youngest ones. Minor differences in expression of AaeIAPs were observed in mosquitoes that imbibed a bloodmeal, but the majority of the time points (up to 48 h) were not significantly different. Although in vitro experiments with the Ae. aegypti Aag-2 cell line demonstrated that the various AaeIAPs could be effectively knocked down within one day after dsRNA treatment, only Aag-2 cells treated with dsIAP1 displayed apoptotic morphology. Gene silencing and mortality were also evaluated after topical application and microinjection of the same dsRNAs into female Ae. aegypti. In contrast to previous reports, topical administration of dsRNA against AaeIAP1 did not yield a significant reduction in gene expression or increased mortality. Knockdown of IAP1 and other IAPs by microinjection did not result in significant mortality. In toto, our findings suggest that IAPs may not be suitable RNAi targets for controlling adult mosquito populations.


Assuntos
Culicidae/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas de Insetos/metabolismo , Interferência de RNA , Animais , Feminino , Perfilação da Expressão Gênica , Microinjeções , Controle de Mosquitos
13.
Genome Res ; 22(12): 2478-88, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22813931

RESUMO

Microsporidia comprise a large phylum of obligate intracellular eukaryotes that are fungal-related parasites responsible for widespread disease, and here we address questions about microsporidia biology and evolution. We sequenced three microsporidian genomes from two species, Nematocida parisii and Nematocida sp1, which are natural pathogens of Caenorhabditis nematodes and provide model systems for studying microsporidian pathogenesis. We performed deep sequencing of transcripts from a time course of N. parisii infection. Examination of pathogen gene expression revealed compact transcripts and a dramatic takeover of host cells by Nematocida. We also performed phylogenomic analyses of Nematocida and other microsporidian genomes to refine microsporidian phylogeny and identify evolutionary events of gene loss, acquisition, and modification. In particular, we found that all microsporidia lost the tumor-suppressor gene retinoblastoma, which we speculate could accelerate the parasite cell cycle and increase the mutation rate. We also found that microsporidia acquired transporters that could import nucleosides to fuel rapid growth. In addition, microsporidian hexokinases gained secretion signal sequences, and in a functional assay these were sufficient to export proteins out of the cell; thus hexokinase may be targeted into the host cell to reprogram it toward biosynthesis. Similar molecular changes appear during formation of cancer cells and may be evolutionary strategies adopted independently by microsporidia to proliferate rapidly within host cells. Finally, analysis of genome polymorphisms revealed evidence for a sexual cycle that may provide genetic diversity to alleviate problems caused by clonal growth. Together these events may explain the emergence and success of these diverse intracellular parasites.


Assuntos
Evolução Molecular , Genoma Fúngico , Microsporídios/crescimento & desenvolvimento , Microsporídios/genética , Animais , Caenorhabditis/parasitologia , Montagem e Desmontagem da Cromatina , Mapeamento Cromossômico , DNA Fúngico/genética , Bases de Dados Genéticas , Deleção de Genes , Genes Supressores de Tumor , Variação Genética , Heterozigoto , Hexoquinase/metabolismo , Microsporídios/classificação , Microsporídios/patogenicidade , Família Multigênica , Filogenia , Polimorfismo de Nucleotídeo Único , Retinoblastoma/genética , Análise de Sequência de RNA
14.
Fungal Genet Biol ; 83: 41-44, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26300319

RESUMO

Microsporidia are highly divergent fungi that are obligate intracellular pathogens of a wide range of host organisms. Here we review recent findings from the genome sequences of mosquito-infecting microsporidian species Edhazardia aedis and Vavraia culicis, which show large differences in genome size, although similar numbers of predicted genes. We also show a video of E. aedis polar tube firing, which is the dramatic mechanism used by microsporidia to deliver the germ cell (sporoplasm) into the host cell to initiate intracellular infection.


Assuntos
Culicidae/parasitologia , Genoma Fúngico , Microsporídios/genética , Animais , Tamanho do Genoma , Células Germinativas/crescimento & desenvolvimento , Células Germinativas/parasitologia , Interações Hospedeiro-Patógeno , Microsporídios/citologia , Microsporídios/patogenicidade
15.
J Invertebr Pathol ; 126: 31-42, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25637516

RESUMO

An undescribed microsporidium was detected and isolated from the South American bumble bee Bombus atratus collected in the Pampas region of Argentina. Infection intensity in workers averaged 8.2 × 10(7)spores/bee. The main site of infection was adipose tissue where hypertrophy of adipocytes resulted in cyst-like body formation. Mature spores were ovoid and monomorphic. They measured 4.00 µm × 2.37 µm (fresh) or 3.98 µm × 1.88 µm (fixed). All stages were diplokariotic and developed in direct contact with host cytoplasm. Isofilar polar filament was arranged in 16 coils in one or, posteriorly, two layers. Coiling angle was variable, between perpendicular and almost parallel to major spore axis. Late meronts and sporogonial stages were surrounded by vesicles of approximately 60 nm in diameter. Based on both new and already designed primers, a 1827 bp (SSUrRNA, ITS, LSUrRNA) sequence was obtained. Data analyses suggest that this microsporidium is a new species of the genus Tubulinosema. The name Tubulinosema pampeana sp. n. is proposed.


Assuntos
Abelhas/microbiologia , Interações Hospedeiro-Patógeno , Microsporídios não Classificados/fisiologia , Animais , Argentina , Abelhas/ultraestrutura , Citoplasma/microbiologia , Feminino , Funções Verossimilhança , Masculino , Microscopia Eletrônica de Transmissão , Microsporídios não Classificados/isolamento & purificação , Microsporídios não Classificados/ultraestrutura , Filogenia , Esporos Fúngicos/ultraestrutura
16.
J Invertebr Pathol ; 129: 45-56, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26031565

RESUMO

A new microsporidian genus and species, Myrmecomorba nylanderiae, is described from North American populations of the tawny crazy ant, Nylanderia fulva. This new species was found to be heterosporous producing several types of binucleate spores in both larval and adult stages and an abortive octosporoblastic sporogony in adult ants. While microsporidia are widespread arthropod parasites, this description represents only the fifth species described from an ant host. Molecular analysis indicated that this new taxon is phylogenetically closely allied to the microsporidian family Caudosporidae, a group known to parasitize aquatic black fly larvae. We report the presence of 3 spore types (Type 1 DK, Type 2 DK, and octospores) with infections found in all stages of host development and reproductive castes. This report documents the first pathogen infecting N. fulva, an invasive ant of considerable economic and ecological consequence.


Assuntos
Formigas/parasitologia , Microsporídios/fisiologia , Animais , Genes Fúngicos/genética , Filogenia , Reação em Cadeia da Polimerase
17.
J Med Entomol ; 51(3): 605-15, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24897853

RESUMO

A field strain of Aedes aegypti (L.) was collected from Puerto Rico in October 2008. Based on LD50 values by topical application, the Puerto Rico strain was 73-fold resistant to permethrin compared with a susceptible Orlando strain. In the presence of piperonyl butoxide, the resistance of Puerto Rico strain of Ae. aegypti was reduced to 15-fold, suggesting that cytochrome P450-mediated detoxification is involved in the resistance of the Puerto Rico strain to permethrin. To determine the cytochrome P450s that might play a role in the resistance to permethrin, the transcriptional levels of 164 cytochrome P450 genes in the Puerto Rico strain were compared with that in the Orlando strain. Of the 164 cytochrome P450s, 33 were significantly (P < 0.05) up-regulated, including cytochrome P450s in families four, six, and nine. Multiple studies have investigated the functionality of family six and nine cytochrome P450s, therefore, we focused on the up-regulated family 4 cytochrome P450s. To determine whether up-regulation of the four cytochrome P450s had any functional role in permethrin resistance, transgenic Drosophila melanogaster Meigen lines overexpressing the four family 4 P450 genes were generated, and their ability to survive exposure to permethrin was evaluated. When exposed to 5 microg per vial permethrin, transgenic D. melanogaster expressing CYP4D24, CYP4H29, CYP4J15v1, and CYP4H33 had a survival rate of 60.0 +/- 6.7, 29.0 +/- 4.4, 64.4 +/- 9.7, and 11.0 +/- 4.4%, respectively. However, none of the control flies survived the permethrin exposure at the same concentration. Similarly, none of the transgenic D. melanogaster expressing CYP4J15v1 or CYP4H33 ?5 survived when they were exposed to permethrin at 10 microg per vial. However, transgenic D. melanogaster expressing CYP4D24 and CYP4H29 had a survival rate of 37.8 +/- 4.4 and 2.2 +/- 2.2%, respectively. Taken together, our results suggest that CYP4D24 might play an important role in cytochrome P450-mediated resistance to permethrin.


Assuntos
Aedes/genética , Regulação da Expressão Gênica , Resistência a Inseticidas , Inseticidas/farmacologia , Permetrina/farmacologia , Aedes/efeitos dos fármacos , Aedes/metabolismo , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Florida , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Dados de Sequência Molecular , Butóxido de Piperonila/farmacologia , Porto Rico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
18.
J Invertebr Pathol ; 114(1): 100-5, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23827081

RESUMO

A new genus and species of microsporidia is described from adults of the termite Uncitermes teevani (Emerson) (n. comb., formerly Armitermes teevani), collected in Ecuador. Masses of elongate, ovoid, uninucleate spores were localized to the coelomic cavity of adult workers and measured 6.29×3.33µm (fresh) and 5.83×3.00µm (fixed). These spores were individually contained within a multi-layered sporophorous vesicle and contained an isofilar polar filament with 24-28 coils. Blast-n analysis revealed that the small subunit ribosomal DNA (ssrDNA) sequence of this new species exhibited 85% identity with that of a Varimorpha species from the fire ant, Solenopsis richteri, and slightly less (78-85% identity) to a large clade of microsporidian parasites from mosquitoes and microcrustacea. The morphological and sequence data support the conclusion that Multilamina teevani gen. et sp. nov. is a novel microsporidium and distinct from any previously described genera or species.


Assuntos
Isópteros/microbiologia , Microsporídios/fisiologia , Animais , DNA Ribossômico/química , Funções Verossimilhança , Microsporídios/classificação , Microsporídios/genética , Microsporídios/isolamento & purificação , Filogenia , Análise de Sequência de DNA , Esporos Fúngicos/isolamento & purificação , Esporos Fúngicos/fisiologia , Esporos Fúngicos/ultraestrutura
19.
Pestic Biochem Physiol ; 107(1): 138-47, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25149248

RESUMO

Twenty trifluoromethylphenyl amides were synthesized and evaluated as fungicides and as mosquito toxicants and repellents. Against Aedes aegypti larvae, N-(2,6-dichloro-4-(trifluoromethyl)phenyl)-3,5-dinitrobenzamide (1e) was the most toxic compound (24 h LC50 1940 nM), while against adults N-(2,6-dichloro-4-(trifluoromethyl)phenyl)-2,2,2-trifluoroacetamide (1c) was most active (24 h LD50 19.182 nM, 0.5 µL/insect). However, the 24 h LC50 and LD50 values of fipronil against Ae. aegypti larvae and adults were significantly lower: 13.55 nM and 0.787 × 10(-4) nM, respectively. Compound 1c was also active against Drosophila melanogaster adults with 24 h LC50 values of 5.6 and 4.9 µg/cm(2) for the Oregon-R and 1675 strains, respectively. Fipronil had LC50 values of 0.004 and 0.017 µg/cm(2) against the two strains of D. melanogaster, respectively. In repellency bioassays against female Ae. aegypti, 2,2,2-trifluoro-N-(2-(trifluoromethyl)phenyl)acetamide (4c) had the highest repellent potency with a minimum effective dosage (MED) of 0.039 µmol/cm(2) compared to DEET (MED of 0.091 µmol/cm(2)). Compound N-(2-(trifluoromethyl)phenyl)hexanamide (4a) had an MED of 0.091 µmol/cm(2) which was comparable to DEET. Compound 4c was the most potent fungicide against Phomopsis obscurans. Several trends were discerned between the structural configuration of these molecules and the effect of structural changes on toxicity and repellency. Para- or meta- trifluoromethylphenyl amides with an aromatic ring attached to the carbonyl carbon showed higher toxicity against Ae. aegypti larvae, than ortho- trifluoromethylphenyl amides. Ortho- trifluoromethylphenyl amides with trifluoromethyl or alkyl group attached to the carbonyl carbon produced higher repellent activity against female Ae. aegypti and Anopheles albimanus than meta- or para- trifluoromethylphenyl amides. The presence of 2,6-dichloro- substitution on the phenyl ring of the amide had an influence on larvicidal and repellent activity of para- trifluoromethylphenyl amides.


Assuntos
Amidas/toxicidade , Fungicidas Industriais/toxicidade , Repelentes de Insetos/toxicidade , Inseticidas/toxicidade , Aedes/efeitos dos fármacos , Amidas/síntese química , Animais , Drosophila/efeitos dos fármacos , Feminino , Fungos/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Fungicidas Industriais/síntese química , Repelentes de Insetos/síntese química , Inseticidas/síntese química , Larva/efeitos dos fármacos , Dose Letal Mediana
20.
Molecules ; 18(4): 4308-27, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23579997

RESUMO

The antimicrobial properties of essential oils have been documented, and their use as "biocides" is gaining popularity. The aims of this study were to analyze the chemical composition and assess the biological activities of Hedychium essential oils. Oils from 19 Hedychium species and cultivars were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) techniques. The antifungal and insecticidal activities of these oils were tested against Colletotrichum acutatum, C. fragariae, and C. gloeosporioides, and three insects, the azalea lace bug (Stephanitis pyrioides), the yellow fever mosquito (Aedes aegypti), and the red imported fire ant (Solenopsis invicta). Hedychium oils were rich in monoterpenes and sesquiterpenes, especially 1,8-cineole (0.1%-42%), linalool (<0.1%-56%), a-pinene (3%-17%), b-pinene (4%-31%), and (E)-nerolidol (0.1%-20%). Hedychium oils had no antifungal effect on C. gloeosporioides, C. fragariae, and C. acutatum, but most Hedychium oils effectively killed azalea lace bugs. The oils also show promise as an adult mosquito repellent, but they would make rather poor larvicides or adulticides for mosquito control. Hedychium oils acted either as a fire ant repellent or attractant, depending on plant genotype and oil concentration.


Assuntos
Antifúngicos/química , Inseticidas/química , Óleos Voláteis/química , Zingiberaceae/química , Monoterpenos Acíclicos , Animais , Antifúngicos/farmacologia , Bioensaio/métodos , Colletotrichum/efeitos dos fármacos , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Insetos/efeitos dos fármacos , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Masculino , Monoterpenos/química , Monoterpenos/farmacologia , Óleos Voláteis/farmacologia , Sesquiterpenos/química , Sesquiterpenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA