RESUMO
The enzyme glyoxalase-I (Glo-I) is an essential therapeutic target in cancer treatment. Significant efforts have been made to discover competitive inhibitors of Glo-I as potential anticancer agents. Herein, we report the synthesis of a series of diazenylbenzenesulfonamide derivatives, their in vitro evaluation against Glo-I and the resulting structure-activity relationships. Among the compounds tested, compounds 9h and 9j exhibited the highest activity with IC50 1.28 µM and 1.13 µM, respectively. Docking studies to explore the binding mode of the compounds identified key moieties that may contribute to the observed activities. The active compounds will serve as suitable leads for further chemical optimization.
Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Lactoilglutationa Liase/antagonistas & inibidores , Sulfonamidas/farmacologia , Antineoplásicos/química , Inibidores Enzimáticos/química , Humanos , Lactoilglutationa Liase/metabolismo , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Sulfonamidas/química , BenzenossulfonamidasRESUMO
New chrysin-De-allyl-Pac-1 hybrid analogues, tethered with variable heterocyclic systems (4a-4o), were rationally designed and synthesized. The target compounds were screened for in vitro antiproliferative efficacy in the triple-negative breast cancer (TNBC) cell line, MDA-MB-231, and normal human mammary epithelial cells (HMECs). Two compounds, 4g and 4i, had the highest efficacy and selectivity towards MDA-MB-231 cells, and thus, were further evaluated by mechanistic experiments. The results indicated that both compounds 4g and 4i induced apoptosis by (1) inducing cell cycle arrest at the G2 phase in MDA-MB-231 cells, and (2) activating the intrinsic apoptotic pathways in a concentration-dependent manner. Physicochemical characterizations of these compounds suggested that they can be further optimized as potential anticancer compounds for TNBC cells. Overall, our results suggest that 4g and 4i could be suitable leads for developing novel compounds to treat TNBC.
Assuntos
Compostos Alílicos/química , Antineoplásicos/farmacologia , Flavonoides/química , Hidrazonas/química , Piperazinas/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/química , Apoptose , Ciclo Celular , Movimento Celular , Proliferação de Células , Feminino , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Células Tumorais CultivadasRESUMO
Leukotriene B4 (LTB4) is a potent, proinflammatory lipid mediator implicated in the pathologies of an array of inflammatory diseases and cancer. The biosynthesis of LTB4 is regulated by the leukotriene A4 hydrolase (LTA4H). Compounds capable of limiting the formation of LTB4, through selective inhibition of LTA4H, are expected to provide potent anti-inflammatory and anti-cancer agents. The aim of the current study is to obtain potential LTA4H inhibitors using computer-aided drug design. A hybrid 3D structure-based pharmacophore model was generated based on the crystal structure of LTA4H in complex with bestatin. The generated pharmacophore was used in a virtual screen of the Maybridge database. The retrieved hits were extensively filtered, then docked into the active site of the enzyme. Finally, they were consensually scored to yield five hits as potential LTA4H inhibitors. Consequently, the selected hits were purchased and their biological activity assessed in vitro against the epoxide hydrolase activity of LTA4H. The results were very promising, with the most active compound showing 73.6% inhibition of the basal epoxide hydrolase activity of LTA4H. The results from this exploratory study provide valuable information for the design and development of more potent and selective inhibitors.
Assuntos
Inibidores Enzimáticos/química , Epóxido Hidrolases/química , Inflamação/tratamento farmacológico , Neoplasias/tratamento farmacológico , Domínio Catalítico/efeitos dos fármacos , Domínio Catalítico/genética , Desenho de Fármacos , Inibidores Enzimáticos/uso terapêutico , Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/genética , Epóxido Hidrolases/ultraestrutura , Humanos , Inflamação/patologia , Simulação de Acoplamento Molecular , Neoplasias/patologia , Relação Estrutura-AtividadeRESUMO
Oxidative events that take place during regular oxygen metabolism can lead to the formation of organic or inorganic radicals. The interaction of these radicals with macromolecules in the organism and with DNA in particular is suspected to lead to apoptosis, DNA lesions and cell damage. Independent generation of DNA lesions resulting from oxidative damage is used to promote the study of their effects on biological systems. An efficient synthesis of oligodeoxyribonucleotides (ODNs) containing the oxidative damage lesion 3'-oxothymidine has been accomplished via incorporation of C3'-hydroxymethyl thymidine as its corresponding 5'-phosphoramidite. Through oxidative cleavage using sodium periodate in aqueous solution, the lesion of interest is easily generated. Due to its inherent instability it cannot be directly isolated, but must be generated in situ. 3'-Oxothymidine is a demonstrated damage product formed upon generation of the C3'-thymidinyl radical in ODN.