Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 415(15): 3007-3031, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37106123

RESUMO

A comprehensive physicochemical characterization of heterogeneous nanoplastic (NPL) samples remains an analytical challenge requiring a combination of orthogonal measurement techniques to improve the accuracy and robustness of the results. Here, batch methods, including dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), tunable resistive pulse sensing (TRPS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM), as well as separation/fractionation methods such as centrifugal liquid sedimentation (CLS) and field-flow fractionation (FFF)-multi-angle light scattering (MALS) combined with pyrolysis gas chromatography mass spectrometry (pyGC-MS) or Raman microspectroscopy (RM) were evaluated for NPL size, shape, and chemical composition measurements and for quantification. A set of representative/test particles of different chemical natures, including (i) polydisperse polyethylene (PE), (ii) (doped) polystyrene (PS) NPLs, (iii) titanium dioxide, and (iv) iron oxide nanoparticles (spherical and elongated), was used to assess the applicability and limitations of the selected methodologies. Particle sizes and number-based concentrations obtained by orthogonal batch methods (DLS, NTA, TRPS) were comparable for monodisperse spherical samples, while higher deviations were observed for polydisperse, agglomerated samples and for non-spherical particles, especially for light scattering methods. CLS and TRPS offer further insight with increased size resolution, while detailed morphological information can be derived by electron microscopy (EM)-based approaches. Combined techniques such as FFF coupled to MALS and RM can provide complementary information on physical and chemical properties by online measurements, while pyGC-MS analysis of FFF fractions can be used for the identification of polymer particles (vs. inorganic particles) and for their offline (semi)quantification. However, NPL analysis in complex samples will continue to present a serious challenge for the evaluated techniques without significant improvements in sample preparation.

2.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36260500

RESUMO

A Fructobacillus strain was isolated from the flower of a nodding thistle (Carduus nutans) collected in Bavaria, Germany. The strain is Gram-positive, rod-shaped, non-motile, non-sporulating, catalase- and oxidase-negative, and facultatively anaerobic. Growth can be detected at 10-37 °C and pH 4 to 9. The genome size is about 1.56 Mbp and the G+C content is 43.76 mol%. Assignment to the genus Fructobacillus was done by average nucleotide identity (ANI), 16S rRNA gene sequence and multilocus sequence analyses. Calculations of ANI and digital DNA-DNA hybridization values indicate a novel species with Fructobacillus tropaeoli DSM 23246T (93.58% ANI and 57.9 % dDDH) being its closest relative. Therefore, a new species named Fructobacillus cardui sp. nov. with TMW 2.2452T (=DSM 113480T=CECT 30515T) as type strain is proposed.


Assuntos
Carduus , RNA Ribossômico 16S/genética , Composição de Bases , Carduus/genética , Catalase/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Filogenia , Ácidos Graxos/química , Flores , Nucleotídeos
3.
Redox Biol ; 72: 103144, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38613920

RESUMO

Nitric oxide (NO) is a key signalling molecule released by vascular endothelial cells that is essential for vascular health. Low NO bioactivity is associated with cardiovascular diseases, such as hypertension, atherosclerosis, and heart failure and NO donors are a mainstay of drug treatment. However, many NO donors are associated with the development of tolerance and adverse effects, so new formulations for controlled and targeted release of NO would be advantageous. Herein, we describe the design and characterisation of a novel NO delivery system via the reaction of acidified sodium nitrite with thiol groups that had been introduced by cysteamine conjugation to porous graphene oxide nanosheets, thereby generating S-nitrosated nanosheets. An NO electrode, ozone-based chemiluminescence and electron paramagnetic resonance spectroscopy were used to measure NO released from various graphene formulations, which was sustained at >5 × 10-10 mol cm-2 min-1 for at least 3 h, compared with healthy endothelium (cf. 0.5-4 × 10-10 mol cm-2 min-1). Single cell Raman micro-spectroscopy showed that vascular endothelial and smooth muscle cells (SMCs) took up graphene nanostructures, with intracellular NO release detected via a fluorescent NO-specific probe. Functionalised graphene had a dose-dependent effect to promote proliferation in endothelial cells and to inhibit growth in SMCs, which was associated with cGMP release indicating intracellular activation of canonical NO signalling. Chemiluminescence detected negligible production of toxic N-nitrosamines. Our findings demonstrate the utility of porous graphene oxide as a NO delivery vehicle to release physiologically relevant amounts of NO in vitro, thereby highlighting the potential of these formulations as a strategy for the treatment of cardiovascular diseases.


Assuntos
Grafite , Óxido Nítrico , Grafite/química , Óxido Nítrico/metabolismo , Humanos , Nanoestruturas/química , Porosidade , Doadores de Óxido Nítrico/química , Doadores de Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Doenças Cardiovasculares/tratamento farmacológico , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA