Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Mutagenesis ; 39(2): 146-155, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38183270

RESUMO

The two-test in vitro battery for genotoxicity testing (Ames and micronucleus) has in the majority of cases replaced the three-test battery (as two-test plus mammalian cell gene mutation assay) for the routine testing of chemicals, pharmaceuticals, cosmetics, and agrochemical metabolites originating from food and feed as well as from water treatment. The guidance for testing agrochemical groundwater metabolites, however, still relies on the three-test battery. Data collated in this study from 18 plant protection and related materials highlights the disparity between the often negative Ames and in vitro chromosome aberration data and frequently positive in vitro mammalian cell gene mutation assays. Sixteen of the 18 collated materials with complete datasets were Ames negative, and overall had negative outcomes in in vitro chromosome damage tests (weight of evidence from multiple tests). Mammalian cell gene mutation assays (HPRT and/or mouse lymphoma assay (MLA)) were positive in at least one test for every material with this data. Where both MLA and HPRT tests were performed on the same material, the HPRT seemed to give fewer positive responses. In vivo follow-up tests included combinations of comet assays, unscheduled DNA synthesis, and transgenic rodent gene mutation assays, all gave negative outcomes. The inclusion of mammalian cell gene mutation assays in a three-test battery for groundwater metabolites is therefore not justified and leads to unnecessary in vivo follow-up testing.


Assuntos
Hipoxantina Fosforribosiltransferase , Linfoma , Camundongos , Animais , Testes de Mutagenicidade , Ensaio Cometa , Roedores , Agroquímicos , Testes para Micronúcleos , Dano ao DNA
2.
Regul Toxicol Pharmacol ; 136: 105263, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36228836

RESUMO

Titanium dioxide is a ubiquitous white material found in a diverse range of products from foods to sunscreens, as a pigment and thickener, amongst other uses. Titanium dioxide has been considered no longer safe for use in foods (nano and microparticles of E171) by the European Food Safety Authority (EFSA) due to concerns over genotoxicity. There are however, conflicting opinions regarding the safety of Titanium dioxide. In an attempt to clarify the situation, a comprehensive weight of evidence (WoE) assessment of the genotoxicity of titanium dioxide based on the available data was performed. A total of 192 datasets for endpoints and test systems considered the most relevant for identifying mutagenic and carcinogenic potential were reviewed and discussed for both reliability and relevance (by weight of evidence) and in the context of whether the physico-chemical properties of the particles had been characterised. The view of an independent panel of experts was that, of the 192 datasets identified, only 34 met the reliability and quality criteria for being most relevant in the evaluation of genotoxicity. Of these, 10 were positive (i.e. reported evidence that titanium dioxide was genotoxic), all of which were from studies of DNA strand breakage (comet assay) or chromosome damage (micronucleus or chromosome aberration assays). All the positive findings were associated with high cytotoxicity, oxidative stress, inflammation, apoptosis, necrosis, or combinations of these. Considering that DNA and chromosome breakage can be secondary to physiological stress, it is highly likely that the observed genotoxic effects of titanium dioxide, including those with nanoparticles, are secondary to physiological stress. Consistent with this finding, there were no positive results from the in vitro and in vivo gene mutation studies evaluated, although it should be noted that to definitively conclude a lack of mutagenicity, more robust in vitro and in vivo gene mutation studies would be useful. Existing evidence does not therefore support a direct DNA damaging mechanism for titanium dioxide (nano and other forms).


Assuntos
Nanopartículas Metálicas , Reprodutibilidade dos Testes , Nanopartículas Metálicas/química , Titânio/toxicidade , Titânio/química , Ensaio Cometa , Dano ao DNA , Mutagênicos/toxicidade , DNA
3.
Regul Toxicol Pharmacol ; 86: 279-291, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28342846

RESUMO

The potential of molybdenum substances to cause genotoxic effects has been studied previously. However, a review of existing in vitro data, including an assessment of relevance and reliability, has shown that inconsistent results have been observed in the past. To resolve the inconsistencies, new studies were performed with the highly soluble sodium molybdate dihydrate according to OECD test guidelines. In a bacterial reverse mutation assay sodium molybdate dihydrate did not induce reverse mutations in five strains of Salmonella typhimurium. No mutagenic or clastogenic effect was observed at the tk locus of L5178Y mouse lymphoma cells. In a micronucleus test in cultured human peripheral blood lymphocytes no clastogenic or aneugenic effects were seen. These results can be read across to other inorganic molybdenum substances, that all release the molybdate ion [MoO4]2- under physiological conditions as the only toxicologically relevant species. In summary, a weight of evidence assessment of all available in vitro data shows no evidence of genotoxicity of molybdenum substances.


Assuntos
Testes para Micronúcleos , Molibdênio/toxicidade , Testes de Mutagenicidade , Salmonella typhimurium/efeitos dos fármacos , Animais , Humanos , Leucemia L5178 , Camundongos , Mutagênicos , Reprodutibilidade dos Testes , Salmonella typhimurium/genética
4.
Int J Toxicol ; 35(3): 294-308, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26941242

RESUMO

Etelcalcetide is a novel d-amino acid peptide that functions as an allosteric activator of the calcium-sensing receptor and is being developed as an intravenous calcimimetic for the treatment of secondary hyperparathyroidism in patients with chronic kidney disease on hemodialysis. To support clinical development and marketing authorization, a comprehensive nonclinical safety package was generated. Primary adverse effects included hypocalcemia, tremoring, and convulsions. Other adverse effects were considered sequelae of stress associated with hypocalcemia. Cardiovascular safety evaluations in the dog revealed an anticipated prolongation of the corrected QT interval that was related to reductions in serum calcium. Etelcalcetide did not affect the human ether-a-go-go gene ion channel current. Etelcalcetide was mutagenic in some strains of Salmonella, however, based on the negative results in 2 in vitro and 2 in vivo mammalian genotoxicity assays, including a 28-day Muta mouse study, etelcalcetide is considered nongenotoxic. Further support for a lack of genotoxicity was provided due to the fact that etelcalcetide was not carcinogenic in a 6-month transgenic rasH2 mouse model or a 2-year study in rats. There were no effects on fertility, embryo-fetal development, and prenatal and postnatal development. All of the adverse effects observed in both rat and dog were considered directly or secondarily related to the pharmacologic activity of etelcalcetide and the expected sequelae associated with dose-related reductions in serum calcium due to suppression of parathyroid hormone secretion. These nonclinical data indicate no safety signal of concern for human risk beyond that associated with hypocalcemia and associated QT prolongation.


Assuntos
Peptídeos/toxicidade , Animais , Pressão Sanguínea/efeitos dos fármacos , Cálcio/sangue , Cães , Canal de Potássio ERG1/fisiologia , Feminino , Células HEK293 , Frequência Cardíaca/efeitos dos fármacos , Humanos , Hiperparatireoidismo Secundário/tratamento farmacológico , Hipocalcemia/induzido quimicamente , Masculino , Camundongos Transgênicos , Testes de Mutagenicidade , Peptídeos/farmacocinética , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Coelhos , Ratos Sprague-Dawley , Reprodução/efeitos dos fármacos , Convulsões/induzido quimicamente , Tremor/induzido quimicamente
5.
Environ Mol Mutagen ; 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37097075

RESUMO

Historical negative control data (HCD) have played an increasingly important role in interpreting the results of genotoxicity tests. In particular, Organisation for Economic Co-operation and Development (OECD) genetic toxicology test guidelines recommend comparing responses produced by exposure to test substances with the distribution of HCD as one of three criteria for evaluating and interpreting study results (referred to herein as "Criterion C"). Because of the potential for inconsistency in how HCD are acquired, maintained, described, and used to interpret genotoxicity testing results, a workgroup of the International Workshops for Genotoxicity Testing was convened to provide recommendations on this crucial topic. The workgroup used example data sets from four in vivo tests, the Pig-a gene mutation assay, the erythrocyte-based micronucleus test, the transgenic rodent gene mutation assay, and the in vivo alkaline comet assay to illustrate how the quality of HCD can be evaluated. In addition, recommendations are offered on appropriate methods for evaluating HCD distributions. Recommendations of the workgroup are: When concurrent negative control data fulfill study acceptability criteria, they represent the most important comparator for judging whether a particular test substance induced a genotoxic effect. HCD can provide useful context for interpreting study results, but this requires supporting evidence that (i) HCD were generated appropriately, and (ii) their quality has been assessed and deemed sufficiently high for this purpose. HCD should be visualized before any study comparisons take place; graph(s) that show the degree to which HCD are stable over time are particularly useful. Qualitative and semi-quantitative assessments of HCD should also be supplemented with quantitative evaluations. Key factors in the assessment of HCD include: (i) the stability of HCD over time, and (ii) the degree to which inter-study variation explains the total variability observed. When animal-to-animal variation is the predominant source of variability, the relationship between responses in the study and an HCD-derived interval or upper bounds value (i.e., OECD Criterion C) can be used with a strong degree of confidence in contextualizing a particular study's results. When inter-study variation is the major source of variability, comparisons between study data and the HCD bounds are less useful, and consequentially, less emphasis should be placed on using HCD to contextualize a particular study's results. The workgroup findings add additional support for the use of HCD for data interpretation; but relative to most current OECD test guidelines, we recommend a more flexible application that takes into consideration HCD quality. The workgroup considered only commonly used in vivo tests, but it anticipates that the same principles will apply to other genotoxicity tests, including many in vitro tests.

6.
Environ Mol Mutagen ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37942839

RESUMO

The in vivo working group (WG) considered three topics: acceptable maximum doses for negative erythrocyte micronucleus (MN) tests, validation status of MN assays in non-hematopoietic tissues, and nuisance factors in the comet assay. The WG reached agreement on many issues, including: negative erythrocyte MN studies should be acceptable if dosing is conducted to Organisation for Economic Co-operation and Development (OECD) test guideline (TG) 474 recommendations and if sufficient bone marrow exposure is demonstrated; consensus on the evidence required to demonstrate "sufficient" exposure was not reached. The liver MN test using six-week-old rats is sufficiently validated to develop an OECD TG, but the impact of animal age warrants additional study. Ki-67 is a reliable marker for cellular proliferation in hepatocytes. The gastrointestinal tract MN test is useful for detecting poorly absorbed or rapidly degraded aneugens, and for genotoxic metabolites formed in the colon. Although current validation data are insufficient to support the development of an OECD TG, the methodologies are sufficient to consider as an appendix to OECD TG474. Comparison of comet assay results to laboratory historical control data (HCD) should not be used in data evaluation, unless the HCD distribution is demonstrated to be stable and the predominant source of HCD variation is due to animal, not study, factors. No universally acceptable negative control limit for any tissue was identified. Methodological differences in comet studies can result in variable data interpretations; more data are required before best practice recommendations can be made. Hedgehogs alone are unreliable indicators of cytotoxicity and additional investigations into cytotoxicity markers are required.

7.
Environ Mol Mutagen ; 63(8-9): 376-388, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36271823

RESUMO

The OECD Test Guideline 488 (TG 488) for the Transgenic Rodent Gene Mutation Assay has undergone several revisions to update the recommended design for studying mutations in somatic tissues and male germ cells. The recently revised TG recommends a single sampling time of 28 days following 28 days of exposure (i.e., 28 + 28 days) for all tissues, irrespective of proliferation rates. An alternative design (i.e., 28 + 3 days) is appropriate when germ cell data is not required, nor considered. While the 28 + 28 days design is clearly preferable for slowly proliferating somatic tissues and germ cells, there is still uncertainty about the impact of extending the sampling time to 28 days for rapidly somatic tissues. Here, we searched the available literature for evidence supporting the applicability and utility of the 28 + 28 days design for rapidly proliferating tissues. A total of 79 tests were identified. When directly comparing results from both designs in the same study, there was no evidence that the 28 + 28 days regimen resulted in a qualitatively different outcome from the 28 + 3 days design. Studies with a diverse range of agents that employed only a 28 + 28 days protocol provide further evidence that this design is appropriate for rapidly proliferating tissues. Benchmark dose analyses demonstrate high quantitative concordance between the 28 + 3 and 28 + 28 days designs for rapidly proliferating tissues. Accordingly, our review confirms that the 28 + 28 days design is appropriate to assess mutagenicity in both slowly and rapidly proliferating somatic tissues, and germ cells, and provides further support for the recommended design in the recently adopted TG 488.


Assuntos
Mutagênicos , Roedores , Animais , Masculino , Animais Geneticamente Modificados/genética , Mutação , Células Germinativas , Testes de Mutagenicidade/métodos
8.
Mutat Res ; 722(1): 7-19, 2011 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-21356328

RESUMO

With the publication of revised draft ICH guidelines (Draft ICH S2), there is scope and potential to establish a combined multi-end point in vivo assay to alleviate the need for multiple in vivo assays, thereby reducing time, cost and use of animals. Presented here are the results of an evaluation trial in which the bone-marrow and peripheral blood (via MicroFlow(®) flow cytometry) micronucleus tests (looking at potential chromosome breakage and whole chromosome loss) in developing erythrocytes or young reticulocytes were combined with the Comet assay (measuring DNA strand-breakage), in stomach, liver and blood lymphocytes. This allowed a variety of potential target tissues (site of contact, site of metabolism and peripheral distribution) to be assessed for DNA damage. This combination approach was performed with minimal changes to the standard and regulatory recommended sampling times for the stand-alone assays. A series of eight in vivo genotoxins (2-acetylaminofluorene, benzo[a]pyrene, carbendazim, cyclophosphamide, dimethylnitrosamine, ethyl methanesulfonate, ethyl nitrosourea and mitomycin C), which are known to act via different modes of action (direct- and indirect-acting clastogens, alkylating agents, gene mutagens, cross-linking and aneugenic compounds) were tested. Male rats were dosed at 0, 24 and 45 h, and bone marrow and peripheral blood (micronucleus endpoint), liver, whole blood and stomach (Comet endpoint) were sampled at three hours after the last dose. Comet and micronucleus responses were as expected based on available data for conventional (acute) stand-alone assays. All compounds were detected as genotoxic in at least one of the endpoints. The importance of evaluating both endpoints was highlighted by the uniquely positive responses for certain chemicals (benzo[a]pyrene and 2-acetylaminofluorene) with the Comet endpoint and certain other chemicals (carbendazim and mitomycin C) with the micronucleus endpoint. The data generated from these investigations demonstrate the suitability of the multi-endpoint design.


Assuntos
Ensaio Cometa , Dano ao DNA , Determinação de Ponto Final , Testes para Micronúcleos/métodos , Mutagênicos/toxicidade , Animais , Medula Óssea , Eritrócitos , Citometria de Fluxo , Fígado/irrigação sanguínea , Linfócitos , Masculino , Ratos , Reticulócitos , Estômago/irrigação sanguínea
9.
Toxicol Rep ; 8: 206-214, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33489780

RESUMO

Hydroquinone (HQ) exposure is common as it is a natural component of plant-based foods and is used in some fingernail polishes, hair dyes, and skin lighteners. Industrially it is used as an antioxidant, polymerization inhibitor, and reducing agent. The current study was undertaken to determine whether HQ may cause DNA damage in an in vivo comet assay in F344 rats. DNA strand breaks were assessed in the duodenum as a direct tissue contact site, the testes, and the liver and kidneys, which were tumor sites in bioassays. Rats were exposed to HQ by gavage at 0, 105, 210, or 420 mg/kg/day. At all dose levels, mean % tail intensity and tail moment values for all tissues in animals given HQ were similar to the control. There were no statistically significant increases in tail intensity in any tissue following HQ treatment of male and female rat and data for all animals fell within the available historical control ranges for each tissue. There was no evidence of induction of DNA damage in cells isolated from duodenum, kidney or liver of male and female rats or in the testes of male rats following exposure to HQ at a dose levels up to 420 mg/kg/day, which caused acute renal necrosis.

10.
Toxicol Lett ; 351: 18-27, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34364947

RESUMO

The aim of this study was to examine whether short term, repeat dose, rat studies provide sufficient information about potential carcinogenicity to enable predictions about the carcinogenic potential of agrochemicals to be made earlier in compound development. This study aimed to identify any correlations between toxicity findings obtained for short term rat studies (28 day and 90 day) and neoplastic findings obtained from 24 month rat carcinogenicity studies for agrochemical compounds (18 compounds) tested in Han Wistar and Sprague Dawley rats. The macroscopic pathology, microscopic pathology, hematology, biochemistry, organ weights, estrogen receptor activation and genotoxicity results were examined. Seven out of 18 non genotoxic compounds developed tumors in treated rats in the carcinogenicity study and of these, two compounds showed no preneoplastic findings in the affected tissues (false negatives). Of the remaining five true positives, correlations were noted between corneal opacity and keratitis (90 day study) as early indicators of squamous cell carcinoma and papilloma of the cornea of the eye (compound 1, a hydroxyphenylpyruvate dioxygenase inhibitor) and inflammation of the stomach and kidney (90 day study) and gastric squamous cell papilloma and squamous cell carcinoma and renal tubular adenoma and carcinoma, respectively (compound 12, a fungicide with multisite activity). Minor decreases in uterine weight and increases in estradiol hydroxylation activity at 28 days were associated with endometrial adenocarcinoma (compound 18, a mitochondrial complex II electron transport inhibitor). Early liver weight increases and hepatocellular centrilobular hypertrophy (28 day study) were associated with thyroid follicular adenomas (compound 11, a succinate dehydrogenase inhibitor) in female animals only. Hepatic centrilobular hypertrophy (28 day studies) correlated with thyroid adenomas in males in carcinogenicity studies (compound 2, a hydroxyphenylpyruvate dioxygenase inhibitor). In contrast, treatment related, nasopharynx tumors (compound 3, an elongase inhibitor) and uterine adenocarcinoma (compound 9, a succinate dehydrogenase inhibitor) could not be correlated with findings from the short term studies examined. Eleven compounds displayed preneoplastic findings with no tumors (false positives) and there were no compounds with no preneoplastic findings and no tumors (true negatives). This work indicates the value of examining historical, short term studies for specific, nonneoplastic findings which correlate with tumors in carcinogenicity studies, which may obviate the need for further animal carcinogenicity studies.


Assuntos
Agroquímicos/toxicidade , Alternativas aos Testes com Animais , Praguicidas/toxicidade , Agroquímicos/administração & dosagem , Animais , Testes de Carcinogenicidade , Esquema de Medicação , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , Ratos Wistar
11.
Environ Mol Mutagen ; 60(9): 837-844, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31490579

RESUMO

Caffeic acid is found in variety of fruits and vegetables. It is considered as possible human carcinogen (Group 2B). It is negative in Ames and mouse micronucleus (MN), but positive in mouse lymphoma and chromosomal aberration assays. The objective of this study was to evaluate the in vivo genotoxicity of caffeic acid using three different endpoints: in vivo MN, Pig-a, and comet assay. Two sets of six rats per group were administered vehicle (0.5% hydroxypropyl methylcellulose), 500, 1,000, or 2,000 mg/kg/day of caffeic acid for three consecutive days via oral gavage. One set of animals was used for the Pig-a and MN assay and the other set was used for the comet assay. N-Ethyl N-Nitrosourea was used as positive control for the Pig-a and MN assay, and ethyl methanesulfonate for the comet assay. From one set of animals, peripheral blood was collected on Days -1, 14, and 30 for the Pig-a assay and on Day 4 for the MN assay. The other set of animals was euthanized 3 hr after the last dose; liver and blood were collected for the comet assay. A statistically significant increase in the MN frequency was observed at 2,000 mg/kg/day. No increase in the red blood cells (RBCCD59- ) or reticulocytes (RETCD59- ) Pig-a mutant frequencies was observed on Days 14 or 30. No increase in DNA strand breaks was observed in the peripheral blood or liver in the comet assay. Environ. Mol. Mutagen. 2019. © 2019 Wiley Periodicals, Inc.


Assuntos
Ácidos Cafeicos/efeitos adversos , Animais , Antígenos CD59/metabolismo , Aberrações Cromossômicas/efeitos dos fármacos , Ensaio Cometa/métodos , Quebras de DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Eritrócitos/efeitos dos fármacos , Metanossulfonato de Etila/efeitos adversos , Etilnitrosoureia/efeitos adversos , Masculino , Testes para Micronúcleos/métodos , Testes de Mutagenicidade/métodos , Mutagênicos/efeitos adversos , Ratos , Ratos Sprague-Dawley , Reticulócitos/efeitos dos fármacos
12.
Artigo em Inglês | MEDLINE | ID: mdl-31699340

RESUMO

The working group reached complete or majority agreement on many issues. Results from TGR and in vivo comet assays for 91 chemicals showed they have similar ability to detect in vivo genotoxicity per se with bacterial mutagens and Ames-positive carcinogens. TGR and comet assay results were not significantly different when compared with IARC Group 1, 2 A, and unclassified carcinogens. There were significantly more comet assay positive responses for Group 2B chemicals, and for IARC classified and unclassified carcinogens combined, which may be expected since mutation is a sub-set of genotoxicity. A liver comet assay combined with the bone marrow/blood micronucleus (MNviv) test would detect in vivo genotoxins that do not exhibit tissue-specific or site-of-contact effects, and is appropriate for routine in vivo genotoxicity testing. Generally for orally administered substances, a comet assay at only one site-of-contact GI tract tissue (stomach or duodenum/jejunum) is required. In MNviv tests, evidence of target tissue exposure can be obtained in a number of different ways, as recommended by ICH S2(R1) and EFSA (Hardy et al., 2017). Except for special cases the i.p. route is inappropriate for in vivo testing; for risk evaluations more weight should be given to data from a physiologically relevant administration route. The liver MN test is sufficiently validated for the development of an OECD guideline. However, the impact of dosing animals >6 weeks of age needs to be evaluated. The GI tract MN test shows promise but needs more validation for an OECD guideline. The Pig-a assay detects systemically available mutagens and is a valuable follow-up to in vitro positive results. A new freeze-thaw protocol provides more flexibility. Mutant reticulocyte and erythrocyte frequencies should both be determined. Preliminary data are available for the Pig-a assay in male rat germ cells which require validation including germ cell DNA mutation origin.


Assuntos
Testes de Mutagenicidade/métodos , Animais , Animais Geneticamente Modificados , Biotransformação , Dano ao DNA , Genes Reporter , Vetores Genéticos/genética , Guias como Assunto , Camundongos , Camundongos Endogâmicos , Testes de Mutagenicidade/instrumentação , Testes de Mutagenicidade/normas , Mutagênicos/farmacocinética , Mutagênicos/toxicidade , Mutação , Ratos , Ratos Endogâmicos F344 , Padrões de Referência , Reprodutibilidade dos Testes , Projetos de Pesquisa , Transgenes , Estudos de Validação como Assunto
13.
Artigo em Inglês | MEDLINE | ID: mdl-30744809

RESUMO

A database of 91 chemicals with published data from both transgenic rodent mutation (TGR) and rodent comet assays has been compiled. The objective was to compare the sensitivity of the two assays for detecting genotoxicity. Critical aspects of study design and results were tabulated for each dataset. There were fewer datasets from rats than mice, particularly for the TGR assay, and therefore, results from both species were combined for further analysis. TGR and comet responses were compared in liver and bone marrow (the most commonly studied tissues), and in stomach and colon evaluated either separately or in combination with other GI tract segments. Overall positive, negative, or equivocal test results were assessed for each chemical across the tissues examined in the TGR and comet assays using two approaches: 1) overall calls based on weight of evidence (WoE) and expert judgement, and 2) curation of the data based on a priori acceptability criteria prior to deriving final tissue specific calls. Since the database contains a high prevalence of positive results, overall agreement between the assays was determined using statistics adjusted for prevalence (using AC1 and PABAK). These coefficients showed fair or moderate to good agreement for liver and the GI tract (predominantly stomach and colon data) using WoE, reduced agreement for stomach and colon evaluated separately using data curation, and poor or no agreement for bone marrow using both the WoE and data curation approaches. Confidence in these results is higher for liver than for the other tissues, for which there were less data. Our analysis finds that comet and TGR generally identify the same compounds (mainly potent mutagens) as genotoxic in liver, stomach and colon, but not in bone marrow. However, the current database content precluded drawing assay concordance conclusions for weak mutagens and non-DNA reactive chemicals.


Assuntos
Medula Óssea/efeitos dos fármacos , Colo/efeitos dos fármacos , Ensaio Cometa/métodos , Fígado/efeitos dos fármacos , Mutagênicos/toxicidade , Mutação , Estômago/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Dano ao DNA , Feminino , Masculino , Camundongos , Testes para Micronúcleos , Ratos
14.
Environ Mol Mutagen ; 59(9): 785-797, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30216547

RESUMO

Splenic tumors have been reported in rat cancer bioassays with para-chloroaniline (PCA) and aniline. Development of these tumors is hypothesized to be due to hematotoxicity via the formation of methemoglobin (MetHb) and not direct DNA reactivity. To evaluate the mode of action (MOA) for tumor formation a transgenic rodent (TGR) in vivo gene mutation assay in Big Blue® TgF344 rats was performed with parallel micronuclei analysis in peripheral blood. Male rats were gavaged daily for 28 d to 0.5, 15, and 60 mg/kg PCA and 100 mg/kg aniline, the base molecular structure of PCA. On test day 10, the 60 mg/kg PCA dose was reduced to 30 mg/kg due to toxicity. On test day 4 and 29 peripheral blood micronucleus analysis was performed and on test day 29 clinical chemistry, hematology, and MetHb measurements were taken. At study termination, on test day 31, spleen, bone marrow, and liver (control tissue) were analyzed for cII transgene mutant frequency (MF). Repeat gavage exposure to PCA and aniline for 28 d did not produce an increase in cII transgene MF in analyzed tissues. An increase in micronuclei was seen at both time points at ≥15 mg/kg PCA and 100 mg/kg aniline. At the same dose levels, significant reductions in red blood cells, increases in absolute reticulocytes (ABRET), and increased levels of MetHb were observed. Together these results support that generation of micronuclei and tumorigenicity following exposure to PCA and aniline is due to compensatory mechanisms (e.g. increased cellular turnover) and not direct DNA reactivity. Environ. Mol. Mutagen. 59:785-797, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Compostos de Anilina/toxicidade , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Testes para Micronúcleos , Mutagênicos/toxicidade , Animais , Biomarcadores , Células Sanguíneas/efeitos dos fármacos , Células Sanguíneas/metabolismo , Medula Óssea/efeitos dos fármacos , Estudos de Casos e Controles , Relação Dose-Resposta a Droga , Testes Hematológicos , Fígado/efeitos dos fármacos , Testes de Mutagenicidade , Taxa de Mutação , Ratos , Baço/efeitos dos fármacos
15.
Mutat Res Genet Toxicol Environ Mutagen ; 832-833: 19-28, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30057017

RESUMO

The Organisation for Economic Co-operation and Development Test Guideline (TG) 488 for the transgenic rodent (TGR) mutation assay recommends two sampling times for assessing germ cell mutagenicity following the required 28-day exposure period: 28 + > 49 days for mouse sperm and 28 + >70 days for rat sperm from the cauda epididymis, or three days (i.e., 28 + 3d) for germ cells from seminiferous tubules (hereafter, tubule germ cells) plus caudal sperm for mouse and rat. Although the latter protocol is commonly used for mutagenicity testing in somatic tissues, it has several shortcomings for germ cell testing because it provides limited exposure of the proliferating phase of spermatogenesis when mutations are fixed in the transgene. Indeed, analysis of sperm at 28 + 3d has generated negative results with established germ cell mutagens, while the analysis of tubule germ cells has generated both positive and either negative or equivocal results. The Germ Cell workgroup of the Genetic Toxicology Technical Committee of the Health and Environmental Sciences Institute modelled mouse and rat spermatogenesis to better define the exposure history of the cell population collected from seminiferous tubules. The modelling showed that mouse tubule germ cells at 28 + 3d receive, as a whole, 42% of the total exposure during the proliferating phase. This percentage increases to 99% at 28 + 28d and reaches 100% at 28 + 30d. In the rat, these percentages are 22% and 80% at 28 + 3d and 28 + 28d, reaching 100% at 28 + 44d. These results show that analysis of tubule germ cells at 28 + 28d may be an effective protocol for assessing germ cell mutagenicity in mice and rats using TG 488. Since TG 488 recommends the 28 + 28d protocol for slow dividing somatic tissues, this appears to be a better compromise than 28 + 3d when slow dividing somatic tissues or germ cells are the critical tissues of interest.


Assuntos
Simulação por Computador , Testes de Mutagenicidade/normas , Mutagênicos/toxicidade , Mutação , Organização para a Cooperação e Desenvolvimento Econômico/normas , Espermatogênese , Testículo/patologia , Animais , Animais Geneticamente Modificados , Dano ao DNA , Genes Reporter , Guias como Assunto , Masculino , Camundongos , Ratos , Testículo/efeitos dos fármacos , Testículo/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-30057023

RESUMO

The Organisation for Economic Co-operation and Development Test Guideline 488 (TG 488) provides recommendations for assessing germ cell and somatic cell mutagenicity using transgenic rodent (TGR) models. However, important data gaps exist for selecting an optimal approach for simultaneously evaluating mutagenicity in both cell types. It is uncertain whether analysis of germ cells from seminiferous tubules (hereafter, tubule germ cells) or caudal sperm within the recommended design for somatic tissues (i.e., 28 days of exposure plus three days of fixation time, 28 + 3d) has enough sensitivity to detect an effect as compared with the analysis of sperm within the recommended design for germ cells (i.e., 28 + 49d and 28 + 70d for mouse and rat, respectively). To address these data gaps, the Germ Cell workgroup of the Genetic Toxicology Technical Committee of the Health and Environmental Sciences Institute reviewed the available TGR mutagenicity data in male germ cells, and, characterized the exposure history of tubule germ cells for different sampling times to evaluate its impact on germ cell mutagenicity testing using TG 488. Our analyses suggest that evaluating mutant frequencies in: i) sperm from the cauda epididymis at 28 + 3d does not provide meaningful mutagenicity data; ii), tubule germ cells at 28 + 3d provides reliable mutagenicity data only if the results are positive; and iii) tubule germ cells at 28 + 28d produces reliable positive and negative results in both mice and rats. Thus, the 28 + 28d regimen may provide an approach for simultaneously assessing mutagenicity in somatic tissues and germ cells from the same animals. Further work is required to support the 28 + 28d protocol for tissues other than slowly proliferating tissues as per current TG 488. Finally, recommendations are provided to guide the experimental design for germ cell mutagenicity data for regulatory submission, as well as other possible approaches to increase the reliability of the TGR assay.


Assuntos
Dano ao DNA , Genes Reporter , Células Germinativas/patologia , Testes de Mutagenicidade/normas , Mutagênicos/toxicidade , Mutação , Organização para a Cooperação e Desenvolvimento Econômico/normas , Animais , Animais Geneticamente Modificados , Células Germinativas/efeitos dos fármacos , Células Germinativas/metabolismo , Masculino , Camundongos , Ratos
17.
Mutat Res ; 608(1): 88-96, 2006 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-16797226

RESUMO

2,4-Diaminotoluene (2,4-DAT) is a liver carcinogen in rats and mice whereas 2,6-DAT is not. Both are genotoxic in vitro. Tests for mutations in transgenic mice, unscheduled DNA synthesis (UDS), DNA damage and enhancement of initiated foci in vivo have shown some discrimination between these two analogues, but only after oral administration. 1- and 2-nitronaphthalene (1- and 2-NNT) are also both genotoxic in vitro, although, unlike 2,4- and 2,6-DAT, they do not require metabolic activation. There is some evidence that 2-NNT may be able to induce liver and bladder tumours, and there is some evidence that 1-NNT is not carcinogenic to rats or mice, but none of the data are convincing. When tested for induction of LacZ mutations in Muta Mouse after topical exposure (human occupational exposure route) at their maximum tolerated doses, 2,4-DAT induced a positive response in liver and a marginal response in kidney, whereas 2,6-DAT was negative. 2-NNT also induced a positive mutagenic response in liver, and a marginal response in bladder, whereas 1-NNT was negative. Neither 2,4- nor 2,6-DAT induced mutations at the site of application (skin) as might be expected for chemicals requiring activation by liver enzymes. 2-NNT, which is a direct-acting mutagen in vitro, gave a marginal response for induced mutation at the site of application, but 1-NNT was negative. This study shows that investigation of induction of LacZ mutations after topical application in vivo can provide useful data to help discriminate potentially carcinogenic from non-carcinogenic chemicals that are mutagenic in vitro. Robust carcinogenicity data are needed to determine whether 2-NNT can induce tumours in the liver and bladder.


Assuntos
Testes de Carcinogenicidade/métodos , Óperon Lac , Mutagênicos/toxicidade , Naftalenos/toxicidade , Fenilenodiaminas/toxicidade , Animais , Carcinógenos/toxicidade , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Modelos Animais , Mutação , Naftalenos/administração & dosagem , Fenilenodiaminas/administração & dosagem , Pele/efeitos dos fármacos , Bexiga Urinária/efeitos dos fármacos
18.
Environ Mol Mutagen ; 57(1): 51-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26765635

RESUMO

4-methylimidazole (4-MeI) is formed by the interaction of ammonia with reducing sugars and low levels have been identified as a by-product in coffee, soy sauce, wine, dark beers, soft drinks, and caramel colors. The 4-MeI has been reported to induce alveolar/bronchiolar tumors in mice but not rats. Its mechanism of action is unlikely to be due to genotoxicity as 4-MeI does not induce mutation in Salmonella typhimurium and does not induce micronuclei in rodent peripheral erythrocytes or bone marrow cells. However, the question of whether genetically reactive intermediates could be formed via lung-specific metabolism has not previously been addressed. The 4-MeI was tested for its ability to induce mutation in five standard Ames strains of S. typhimurium using induced rat (F344/N) and mouse (B6C3F1) liver and lung S9 as a source of exogenous metabolism. The chemicals were tested in an OECD 471-compliant bacterial reverse mutation assay, using both plate-incorporation and pre-incubation methodologies, together with 10% S-9 metabolic activation. No induction of mutation (as measured by an increase in revertant colonies) was observed and it was concluded that 4-MeI was not mutagenic in S. typhimurium using either rodent liver or lung S9 for exogenous metabolism.


Assuntos
Imidazóis/toxicidade , Fígado/metabolismo , Pulmão/metabolismo , Testes de Mutagenicidade , Salmonella/efeitos dos fármacos , Salmonella/genética , Animais , Carcinógenos/toxicidade , Camundongos , Testes de Mutagenicidade/métodos , Ratos , Frações Subcelulares
19.
Food Chem Toxicol ; 97: 232-242, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27593899

RESUMO

Perillaldehyde, a natural monocyclic terpenoid found most abundantly in the herb perilla, has a long history of use as a flavouring ingredient to add spiciness and citrus taste to foods. Previously, it was judged to be safe by several international expert panels. To confirm the safety of flavourings placed on the European Union list of flavourings, perillaldehyde was selected by the European Food Safety Authority as a representative of a subgroup of alicyclic aldehyde flavouring substances to be evaluated for genotoxic potential. Perillaldehyde was tested in a bacterial reverse mutation assay, an in vitro micronucleus assay in human lymphocytes, an HPRT assay in mouse lymphoma cells, and a micronucleus/comet assay in Han Wistar rats. In contrast to previously published results, perillaldehyde induced mutation in Salmonella typhimurium strain TA98 in the absence of metabolic activation. The comet assay was negative for duodenum and weakly positive for liver but only at a hepatotoxic dose of perillaldehyde. All other genotoxicity assays were negative. These data do not provide an indication of any genotoxic potential for perillaldehyde, and they provide the primary basis for recent scientific opinions regarding perillaldehyde genotoxicity announced by several international organizations responsible for safety assessment of food additives and flavourings.


Assuntos
Dano ao DNA/efeitos dos fármacos , Fígado/patologia , Linfócitos/patologia , Linfoma/patologia , Monoterpenos/toxicidade , Animais , Células Cultivadas , Ensaio Cometa/métodos , Relação Dose-Resposta a Droga , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Linfócitos/efeitos dos fármacos , Linfoma/tratamento farmacológico , Linfoma/genética , Camundongos , Testes para Micronúcleos/métodos , Testes de Mutagenicidade/métodos , Mutação/genética , Ratos , Ratos Wistar , Salmonella typhimurium
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA