Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Ann Neurol ; 85(1): 32-46, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30525223

RESUMO

OBJECTIVE: Neurotrophin-3 (NT3) plays a key role in the development and function of locomotor circuits including descending serotonergic and corticospinal tract axons and afferents from muscle and skin. We have previously shown that gene therapy delivery of human NT3 into affected forelimb muscles improves sensorimotor recovery after stroke in adult and elderly rats. Here, to move toward the clinic, we tested the hypothesis that intramuscular infusion of NT3 protein could improve sensorimotor recovery after stroke. METHODS: Rats received unilateral ischemic stroke in sensorimotor cortex. To simulate a clinically feasible time to treatment, 24 hours later rats were randomized to receive NT3 or vehicle by infusion into affected triceps brachii for 4 weeks using implanted catheters and minipumps. RESULTS: Radiolabeled NT3 crossed from the bloodstream into the brain and spinal cord in rodents with or without strokes. NT3 increased the accuracy of forelimb placement during walking on a horizontal ladder and increased use of the affected arm for lateral support during rearing. NT3 also reversed sensory impairment of the affected wrist. Functional magnetic resonance imaging during stimulation of the affected wrist showed spontaneous recovery of peri-infarct blood oxygenation level-dependent signal that NT3 did not further enhance. Rather, NT3 induced neuroplasticity of the spared corticospinal and serotonergic pathways. INTERPRETATION: Our results show that delayed, peripheral infusion of NT3 can improve sensorimotor function after ischemic stroke. Phase I and II clinical trials of NT3 (for constipation and neuropathy) have shown that peripheral high doses are safe and well tolerated, which paves the way for NT3 as a therapy for stroke. ANN NEUROL 2019;85:32-46.


Assuntos
Neurotrofina 3/administração & dosagem , Recuperação de Função Fisiológica/efeitos dos fármacos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Feminino , Injeções Intramusculares , Distribuição Aleatória , Ratos , Recuperação de Função Fisiológica/fisiologia , Córtex Sensório-Motor/diagnóstico por imagem , Córtex Sensório-Motor/efeitos dos fármacos , Córtex Sensório-Motor/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Fatores de Tempo
2.
Mol Genet Metab ; 125(4): 322-331, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30145178

RESUMO

Mucopolysaccharidosis (MPS) disorders are caused by deficiencies in lysosomal enzymes, leading to impaired glycosaminoglycan (GAG) degradation. The resulting GAG accumulation in cells and connective tissues ultimately results in widespread tissue and organ dysfunction. The seven MPS types currently described are heterogeneous and progressive disorders, with somatic and neurological manifestations depending on the type of accumulating GAG. Heparan sulfate (HS) is one of the GAGs stored in patients with MPS I, II, and VII and the main GAG stored in patients with MPS III. These disorders are associated with significant central nervous system (CNS) abnormalities that can manifest as impaired cognition, hyperactive and/or aggressive behavior, epilepsy, hydrocephalus, and sleeping problems. This review discusses the anatomical and pathophysiological CNS changes accompanying HS accumulation as well as the mechanisms believed to cause CNS abnormalities in MPS patients. The content of this review is based on presentations and discussions on these topics during a meeting on the brain in MPS attended by an international group of MPS experts.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiopatologia , Disfunção Cognitiva/etiologia , Epilepsia/etiologia , Heparitina Sulfato/metabolismo , Mucopolissacaridoses/complicações , Disfunção Cognitiva/patologia , Epilepsia/patologia , Humanos
3.
J Neurochem ; 142(5): 672-685, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28665486

RESUMO

Little is known about the origin of the neuroactive steroids dehydroepiandrosterone sulphate (DHEAS) and pregnenolone sulphate (PregS) in the brain or of their subsequent metabolism. Using rat brain perfusion in situ, we have found 3 H-PregS to enter more rapidly than 3 H-DHEAS and both to undergo extensive (> 50%) desulphation within 0.5 min of uptake. Enzyme activity for the steroid sulphatase catalysing this deconjugation was enriched in the capillary fraction of the blood-brain barrier and its mRNA expressed in cultures of rat brain endothelial cells and astrocytes. Although permeability measurements suggested a net efflux, addition of the efflux inhibitors GF120918 and/or MK571 to the perfusate reduced rather than enhanced the uptake of 3 H-DHEAS and 3 H-PregS; a further reduction was seen upon the addition of unlabelled steroid sulphate, suggesting a saturable uptake transporter. Analysis of brain fractions after 0.5 min perfusion with the 3 H-steroid sulphates showed no further metabolism of PregS beyond the liberation of free steroid pregnenolone. By contrast, DHEAS underwent 17-hydroxylation to form androstenediol in both the steroid sulphate and the free steroid fractions, with some additional formation of androstenedione in the latter. Our results indicate a gain of free steroid from circulating steroid sulphates as hormone precursors at the blood-brain barrier, with implications for ageing, neurogenesis, neuronal survival, learning and memory.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Permeabilidade Capilar/fisiologia , Sulfato de Desidroepiandrosterona/metabolismo , Pregnenolona/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Masculino , Propionatos/farmacologia , Quinolinas/farmacologia , Ratos , Ratos Wistar
4.
J Inherit Metab Dis ; 36(3): 491-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23412751

RESUMO

Niemann-Pick type C disease is an inherited autosomal recessive neurodegenerative disorder characterised by the accumulation of unesterified cholesterol and sphingolipids within the endosomal/lysosomal compartments. It has been observed that the administration of hydroxypropyl-ß-cyclodextrin (HPBCD) delays onset of clinical symptoms and reduces accumulation of cholesterol and gangliosides within neuronal cells. It was assumed that HPBCD exerts its action by readily entering the CNS and directly interacting with neurones and other brain cells to facilitate removal of stored cholesterol from the late endosomal/lysosomal compartment. Here, we present evidence that refutes this hypothesis. We use two well established techniques for accurately measuring brain uptake of solutes from blood and show that there is no significant crossing of HPBCD into the brain. The two techniques are brain in situ perfusion and intraperitoneal injection followed by multi-time-point regression analysis. Neither study demonstrates significant, time-dependent uptake of HPBCD in either adult or neonatal mice. However, the volume of distribution available to HPBCD (0.113 ± 0.010 ml/g) exceeds the accepted values for plasma and vascular volume of the brain. In fact, it is nearly three times larger than that for sucrose (0.039 ± 0.006 ml/g). We propose that this indicates cell surface binding of HPBCD to the endothelium of the cerebral vasculature and may provide a mechanism for the mobilisation and clearance of cholesterol from the CNS.


Assuntos
Barreira Hematoencefálica/metabolismo , Colesterol/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Doenças de Niemann-Pick/tratamento farmacológico , beta-Ciclodextrinas/uso terapêutico , 2-Hidroxipropil-beta-Ciclodextrina , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Injeções Intraperitoneais , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Neurônios/patologia , Proteína C1 de Niemann-Pick , Doenças de Niemann-Pick/genética , Doenças de Niemann-Pick/metabolismo , Doenças de Niemann-Pick/patologia , Perfusão , Proteínas/genética , Proteínas/metabolismo , beta-Ciclodextrinas/administração & dosagem
5.
Neurobiol Dis ; 37(1): 13-25, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19664713

RESUMO

Neural signalling within the central nervous system (CNS) requires a highly controlled microenvironment. Cells at three key interfaces form barriers between the blood and the CNS: the blood-brain barrier (BBB), blood-CSF barrier and the arachnoid barrier. The BBB at the level of brain microvessel endothelium is the major site of blood-CNS exchange. The structure and function of the BBB is summarised, the physical barrier formed by the endothelial tight junctions, and the transport barrier resulting from membrane transporters and vesicular mechanisms. The roles of associated cells are outlined, especially the endfeet of astrocytic glial cells, and pericytes and microglia. The embryonic development of the BBB, and changes in pathology are described. The BBB is subject to short and long-term regulation, which may be disturbed in pathology. Any programme for drug discovery or delivery, to target or avoid the CNS, needs to consider the special features of the BBB.


Assuntos
Barreira Hematoencefálica/anatomia & histologia , Barreira Hematoencefálica/fisiologia , Animais , Barreira Hematoencefálica/crescimento & desenvolvimento , Barreira Hematoencefálica/patologia , Encéfalo/anatomia & histologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Encéfalo/fisiologia , Permeabilidade Capilar/fisiologia , Humanos , Modelos Neurológicos , Junções Íntimas/fisiologia
6.
J Drug Target ; 14(2): 97-105, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16608736

RESUMO

It was recently shown that doxorubicin (DOX) bound to polysorbate-coated nanoparticles (NP) crossed the intact blood-brain barrier (BBB), and thus reached therapeutic concentrations in the brain. Here, we investigated the biodistribution in the brain and in the body of poly(butyl-2-cyano[3-(14)C]acrylate) NP ([(14)C]-PBCA NP), polysorbate 80 (PS 80)-coated [(14)C]-PBCA NP, DOX-loaded [(14)C]-PBCA NP in glioblastoma 101/8-bearing rats after i.v. injection. The biodistribution profiles and brain concentrations of radiolabeled NP were determined by radioactivity counting after i.v. administration in rats. Changes in BBB permeability after tumour inoculation were assessed by i.v. injection of Evans Blue solution. The accumulation of NP in the tumour site and in the contralateral hemisphere in glioblastoma bearing-rats probably was augmented by the enhanced permeability and retention effect (EPR effect) that may have been becoming instrumental due to the impaired BBB on the NP delivery into the brain. The uptake of the NP by the organs of the reticuloendothelial system (RES) was reduced after PS 80-coating, but the addition of DOX increased again the concentration of NP in the RES.


Assuntos
Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Neoplasias Encefálicas/tratamento farmacológico , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Embucrilato/química , Glioblastoma/tratamento farmacológico , Polissorbatos/química , Animais , Barreira Hematoencefálica , Encéfalo/metabolismo , Neoplasias Encefálicas/patologia , Excipientes , Glioblastoma/patologia , Injeções Intravenosas , Masculino , Nanoestruturas , Transplante de Neoplasias , Tamanho da Partícula , Ratos , Ratos Wistar , Suspensões , Distribuição Tecidual
7.
Pharmacol Ther ; 104(1): 29-45, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15500907

RESUMO

The presence of a blood-brain barrier (BBB) and a blood-cerebrospinal fluid barrier presents a huge challenge for effective delivery of therapeutics to the central nervous system (CNS). Many potential drugs, which are effective at their site of action, have failed and have been discarded during their development for clinical use due to a failure to deliver them in sufficient quantity to the CNS. In consequence, many diseases of the CNS are undertreated. In recent years, it has become clear that the blood-CNS barriers are not only anatomical barriers to the free movement of solutes between blood and brain but also transport and metabolic barriers. The cell association, sometimes called the neurovascular unit, constitutes the BBB and is now appreciated to be a complex group of interacting cells, which in combination induce the formation of a BBB. The various strategies available and under development for enhancing drug delivery to the CNS are reviewed.


Assuntos
Fármacos do Sistema Nervoso Central/administração & dosagem , Doenças do Sistema Nervoso Central/tratamento farmacológico , Sistema Nervoso Central/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Sistema Nervoso Central/metabolismo , Fármacos do Sistema Nervoso Central/farmacocinética , Doenças do Sistema Nervoso Central/metabolismo , Terapia Genética/métodos , Humanos , Lipossomos , Nanoestruturas
8.
Best Pract Res Clin Endocrinol Metab ; 29(2): 159-71, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25987170

RESUMO

Pharmacological research has always focused on developing new therapeutic strategies capable of modifying a disease's natural history and improving patients' quality of life. Despite recent advances within the fields of medicine and biology, some diseases still represent a major challenge for successful therapy. Neuronopathic lysosomal storage disorders, in particular, have high rates of morbidity and mortality and a devastating socio-economic effect. Many of the available therapies, such as enzyme replacement therapy, can reverse the natural history of the disease in peripheral organs but, unfortunately, are still unable to reach the central nervous system effectively because they cannot cross the blood-brain barrier that surrounds and protects the brain. Moreover, many lysosomal storage disorders are characterized by a number of blood-brain barrier dysfunctions, which may further contribute to disease neuropathology and accelerate neuronal cell death. These issues, and their context in the development of new therapeutic strategies, will be discussed in detail in this chapter.


Assuntos
Barreira Hematoencefálica/metabolismo , Terapia de Reposição de Enzimas/métodos , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Humanos , Infusões Intraventriculares , Infusão Espinal , Injeções Intraventriculares , Injeções Espinhais , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/metabolismo , Chaperonas Moleculares/uso terapêutico , Nanopartículas/uso terapêutico , Proteínas Recombinantes
9.
Free Radic Biol Med ; 36(5): 592-604, 2004 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-14980703

RESUMO

Understanding mechanisms associated with flavonoid neuroprotection is complicated by the lack of information on their ability to enter the CNS. This study examined naringenin and quercetin permeability across the blood-brain barrier (BBB), using in vitro (ECV304/C6 coculture) and in situ (rat) models. We report measurable permeabilities (P(app)) for both flavonoids across the in vitro BBB model, consistent with their lipophilicity. Both flavonoids showed measurable in situ BBB permeability. The rates of uptake (K(in)) into the right cerebral hemisphere were 0.145 and 0.019 ml min(-1) g(-1) for naringenin and quercetin, respectively. Quercetin K(in) was comparable to that of colchicine (0.006 ml min(-1) g(-1)), a substrate for P-glycoprotein (P-gp). Preadministration of the P-gp inhibitor PSC833 or GF120918 (10 mg/kg body wt) significantly increased colchicine K(in), but only GF120918 (able to inhibit breast cancer resistance protein, BCRP) affected K(in) for quercetin. Naringenin K(in) was not affected. The influence of efflux transporters on flavonoid permeability at the BBB was further studied using MDCK-MDR1 and immortalized rat brain endothelial cells (RBE4). Colchicine, quercetin, and naringenin all showed measurable accumulation (distribution volume, V(d) (microl/mg protein)) in both cell types. The V(d) for colchicine increased significantly in both cell lines following coincubation with either PSC833 (25 microM) or GF120918 (25 microM). Both inhibitors also caused an increase in naringenin V(d); by contrast only GF120918 coincubation significantly increased quercetin V(d). In conclusion, the results demonstrate that flavonoids are able to traverse the BBB in vivo. However, the permeability of certain flavonoids in vivo is influenced by their lipophilicity and interactions with efflux transporters.


Assuntos
Barreira Hematoencefálica/fisiologia , Colchicina/farmacocinética , Células Endoteliais/metabolismo , Flavanonas/farmacocinética , Quercetina/farmacocinética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Acridinas/farmacologia , Animais , Transporte Biológico/fisiologia , Permeabilidade Capilar , Técnicas de Cocultura , Endotélio Vascular/metabolismo , Inibidores Enzimáticos/farmacologia , Ratos , Tetra-Hidroisoquinolinas/farmacologia
10.
Curr Pharm Des ; 10(12): 1295-312, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15134482

RESUMO

The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) form a very effective barrier to the free diffusion of many polar solutes into the brain. Many metabolites that are polar have their brain entry facilitated by specific inwardly-directed transport mechanisms. In general the more lipid soluble a molecule or drug is, the more readily it will tend to partition into brain tissue. However, a very significant number of lipid soluble molecules, among them many useful therapeutic drugs have lower brain permeability than would be predicted from a determination of their lipid solubility. These molecules are substrates for the ABC efflux transporters which are present in the BBB and BCSB and the activity of these transporters very efficiently removes the drug from the CNS, thus limiting brain uptake. P-glycoprotein (Pgp) was the first of these ABC transporters to be described, followed by the multidrug resistance-associated proteins (MRP) and more recently breast cancer resistance protein (BCRP). All are expressed in the BBB and BCSFB and combine to reduce the brain penetration of many drugs. This phenomenon of "multidrug resistance" is a major hurdle when it comes to the delivery of therapeutics to the brain, not to mention the problem of cancer chemotherapy in general. Therefore, the development of strategies for bypassing the influence of these ABC transporters and for the design of effective drugs that are not substrates and the development of inhibitors for the ABC transporters becomes a high imperative for the pharmaceutical industry.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Barreira Hematoencefálica/fisiologia , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiologia , Química Encefálica/genética , Química Encefálica/fisiologia , Humanos
11.
Novartis Found Symp ; 243: 38-47; discussion 47-53, 180-5, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11990780

RESUMO

The blood-brain barrier (BBB) is formed by the endothelial cells lining the brain microvessels. Complex tight junctions linking adjacent endothelial cells make brain capillaries around 100 times tighter than peripheral capillaries to small hydrophilic molecules. As a result, drugs required to act in the brain, including anti-epileptic drugs (AEDs), have generally been made lipophilic, and are thus able to cross the brain endothelium via the lipid membranes. However, such lipophilic drugs are potential substrates for efflux carriers of the BBB, particularly P glycoprotein (Pgp), predominantly located on the endothelial luminal membrane. It is estimated that up to 50% of drug candidates may be substrates for Pgp. The barrier phenotype of the brain endothelium is induced and maintained by chemical factors released by brain cells, particularly perivascular astrocytic end feet. In several neuropathological conditions, the BBB is disturbed, either as a result of pathology of the endothelium, or of the cells responsible for barrier induction and maintenance. During epileptic attacks, there may be transient BBB opening in the epileptogenic focus. There is evidence that under such pathological conditions, 'second line defence' mechanisms in perivascular glia may be up-regulated, including expression of Pgp and other drug efflux transporters. This complicates interpretation of drug resistance in epilepsy, and therapeutic strategies.


Assuntos
Anticonvulsivantes/farmacocinética , Barreira Hematoencefálica/fisiologia , Epilepsia/tratamento farmacológico , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Astrócitos/metabolismo , Transporte Biológico Ativo , Plexo Corióideo/metabolismo , Resistência a Múltiplos Medicamentos , Endotélio Vascular/metabolismo , Endotélio Vascular/ultraestrutura , Epilepsia/metabolismo , Regulação da Expressão Gênica , Genes MDR , Haplorrinos , Humanos , Lipídeos de Membrana/metabolismo , Camundongos , Camundongos Knockout , Ratos , Especificidade da Espécie , Especificidade por Substrato , Suínos
12.
Neuroreport ; 14(7): 1087-90, 2003 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-12802208

RESUMO

Multiple nucleoside transport systems exist in the body yet the subtypes functional at the blood-brain barrier (BBB) have not been fully investigated. We have employed RBE4 immortalised rat brain endothelial cells to functionally identify the carrier subtypes involved in nucleoside transfer between blood and brain. Uptake in RBE4 cells was partially sodium dependent, indicating the presence of both equilibrative and concentrative systems. Uptake of adenosine via equilibrative transporters was sensitive to nitro-benzylmercaptopurine riboside, which showed biphasic inhibition. Uptake of [3H]-adenosine via concentrative transporters was studied using the subtype-specific inhibitors thymidine (cit), formycin-B (cif) and tubercidin (cib) and was significantly reduced by thymidine and formycin-B but not by tubercidin. This study suggests that nucleoside transport at the in situ BBB may be mediated by ei and es equilibrative transporters and by cit and cif concentrative transporters.


Assuntos
Encéfalo/metabolismo , Endotélio Vascular/metabolismo , Nucleosídeos/metabolismo , Animais , Transporte Biológico/fisiologia , Barreira Hematoencefálica/fisiologia , Linhagem Celular , Relação Dose-Resposta a Droga , Ratos
13.
J Drug Target ; 10(4): 277-83, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12164376

RESUMO

The L-system amino acid transporter on the RBE4 cell line, a well established in vitro model of the blood-brain barrier (BBB), was characterised with the aim to evaluate this in vitro BBB model as tool for the systematic exploration of this endogenous carrier system for drug delivery to the CNS. Transport of L-[3H]-leucine in RBE4 cells was rapid, Na+-independent, bidirectional and followed the principles of trans-stimulation. The inhibition profile of L-leucine uptake was consistent with transport mediated by the L-system amino acid carrier with strong inhibition by large neutral amino acids (LNAA) such as L-phenylalanine and 2-aminobicyclo-heptanecarboxylic acid (BCH), whereas small neutral, basic and acidic amino acids had no significant effect. The transport of L-leucine into the RBE4 cells was saturable and followed single carrier Michaelis-Menten kinetics with Km 107 +/- 10 microM. Vmax 9.13 +/- 0.45 nmol/min/mg protein and KD 1.36 +/- 0.13 microl/min/mg protein. The kinetic constants of L-leucine transport, as well as the ranking of the kinetic constants of the transport of other LNAA investigated, correspond to those of the BBB in vivo. The characteristics of the LNAA transport in RBE4 cells suggest that transport is mediated by a system with characteristics similar to the L1 subtype of amino acid transporter, with carrier specificity equivalent to the L1 carrier system at the BBB in vivo. The study shows that the RBE4 cell line is a very suitable tool for the detailed examination of structure-transport relationships with respect to carrier-mediated drug delivery to the CNS via the L-system amino acid carrier at the BBB. The strength of this in vitro BBB model lies in the combination of the advantages of a cell line, being inexpensive, reproducible and easy to maintain, with the brain endothelium-specific expression of transport systems, to produce an efficient assay for the screening of potential neuropharmaceuticals targeted to specific transport routes to enhance CNS drug delivery.


Assuntos
Sistema L de Transporte de Aminoácidos/metabolismo , Barreira Hematoencefálica/fisiologia , Sistema Nervoso Central/metabolismo , Portadores de Fármacos/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Linhagem Celular , Sistema Nervoso Central/efeitos dos fármacos , Portadores de Fármacos/administração & dosagem , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Ratos
14.
J Drug Target ; 12(5): 265-72, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15512777

RESUMO

A number of nucleoside analogues, consisting of antiviral compounds and agents designed as adenosine A1 receptor agonists, were examined for nucleoside transporter affinity using an in vitro model of the blood-brain barrier (BBB), the rat brain endothelial cell line, RBE4. Structure-activity relationships (SAR) were also performed to identify the key structural requirements for transporter recognition and the suitability of these systems for carrier-mediated strategies to deliver therapeutics across the BBB. Adenosine receptor agonists did not show transport affinity for concentrative nucleoside carriers, but exhibited affinity for equilibrative systems (Ki=10.8-97.9 microM) within the range of Kms for natural substrates. However, none of the antiviral compounds tested in this study showed affinity for either class of nucleoside transporter. SAR studies suggest that the hydroxyl group located at the 3'-position of the ribose moiety is an essential requirement for transporter recognition. This may explain the inability of nucleoside derived anti-viral compounds to use these systems despite the significant structural homology with naturally occurring nucleosides. Sites have also been identified which accommodate structural additions with retention of carrier affinity, suggesting that compounds which fail to penetrate the BBB could be attached to these sites for carrier-mediated delivery using a prodrug strategy.


Assuntos
Antivirais/farmacocinética , Encéfalo/metabolismo , Proteínas de Transporte de Nucleosídeos/fisiologia , Nucleosídeos/farmacocinética , Adenosina/farmacocinética , Animais , Transporte Biológico , Barreira Hematoencefálica , Células Cultivadas , Células Endoteliais , Nucleosídeos/farmacologia , Ratos , Relação Estrutura-Atividade
15.
J Drug Target ; 10(8): 633-6, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12683668

RESUMO

The aim of this study was to analyse the uptake of the synthetic nucleoside tiazofurin and glucoso-linker-tiazofurin conjugate (GLTC) into rat C6 glioma cells in vitro. Results indicated that C6 cells accumulated [3H] tiazofurin slowly with time and that accumulation was reduced by the presence of unlabelled GLTC in the medium which implies that GLTC competes with tiazofurin for transport sites. Uptake of [14C] 2 deoxy-glucose into these cells was very rapid and was not affected by the presence of unlabelled GLTC. To prove the true rate of uptake, the HPLC analysis of cellular extract was performed. After the 360 min of incubation in medium that contained 0.15 mM of tiazofurin, the sum of the concentration of tiazofurin and it's metabolite thiazole-adenine dinucleotide (TAD) in the cells was a total of approximately 4.8% of the amount added to each flask. After the same period of incubation in medium which contained 0.15 mM of GLTC, the sum of concentrations of conjugate, free tiazofurin and TAD represented less than 1/3 of the total concentration measured after the incubation with free tiazofurin and was further reduced in the presence of dipyridamole. Therefore, it can be concluded that GLTC shows some affinity for the nucleoside transporter, but the actual rate of uptake is low.


Assuntos
Antimetabólitos Antineoplásicos/metabolismo , Glioma/metabolismo , Glucose/química , Ribavirina/metabolismo , Animais , Antimetabólitos Antineoplásicos/química , Ligação Competitiva/efeitos dos fármacos , Membrana Celular/metabolismo , Cromatografia Líquida de Alta Pressão , Desoxiglucose/farmacologia , Dipiridamol/farmacologia , Cinética , Ratos , Ribavirina/análogos & derivados , Ribavirina/química , Células Tumorais Cultivadas
16.
In Vitro Cell Dev Biol Anim ; 38(10): 557-65, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12762837

RESUMO

The objectives of this study were to optimize a sensitive high-performance liquid chromatography (HPLC) method for fatty acid (FA) analysis for the quantification of polyunsaturated FAs (PUFAs) in cell lipid extracts and to analyze the lipid and FA patterns of three cell lines used in blood-brain barrier (BBB) models: RBE4, ECV304, and C6. Thin-layer chromatographic analysis revealed differences in the phosphatidylcholine-phosphatidylethanolamine (PC:PE) ratios and the triglyceride (TG) content. The PC:PE ratio was <1 for RBE4 cells but >1 for ECV304 and C6 cells. ECV304 cells displayed up to 9% TG depending on culture time, whereas the other cell lines contained about 1% TG. The percentages of docosahexaenoic acid were 9.4 +/- 1.7% of the unsaturated FAs in RBE4 cells (n = 5; 4 d in culture; 9.9% after 10 d), 8.1 +/- 2.0% in ECV304 cells (n = 11; 10 to 14 d), and 6.7 +/- 0.6% in C6 cells (n = 6; 10 to 14 d) and were close to the published values for rat brain microvascular endothelium. The percentage of arachidonic acid (C20:4) was about half that in vivo. ECV304 cells contained the highest fraction of C20:4, 17.8 +/- 2.2%; RBE4 cells contained 11.6 +/- 2.4%; and C6 cells 15.8 +/- 1.9%. It is concluded that a sensitive HPLC method for FAs is now optimized for the analysis of long-chain PUFAs. The results provide a useful framework for studies on the effects of lipid modulation and give reference information for the development of further BBB models.


Assuntos
Barreira Hematoencefálica/fisiologia , Circulação Cerebrovascular/fisiologia , Ácidos Graxos não Esterificados/química , Ácidos Graxos Insaturados/química , Lipídeos/química , Fosfolipídeos/química , Animais , Encéfalo/irrigação sanguínea , Linhagem Celular , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia em Camada Fina/métodos , Lipídeos/classificação , Modelos Cardiovasculares , Modelos Neurológicos , Ratos
17.
In Vitro Cell Dev Biol Anim ; 38(10): 566-71, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12762838

RESUMO

Lipids of brain tissue and brain microvascular endothelial cells contain high proportions of long-chain polyunsaturated fatty acids (long PUFAs). The blood-brain barrier (BBB) is formed by the brain endothelial cells under the inductive influence of brain cells, especially perivascular glia, and coculture of endothelial cells and glial cells has been used to examine this induction. The objective of this study was to investigate whether C6 glioma cells are able to influence the lipid composition and shift the fatty acid (FA) patterns of the BBB model cell lines RBE4 and ECV304 toward the in vivo situation. Lipid classes of the three cell lines were analyzed by thin-layer chromatography and lipid FA patterns by high-performance liquid chromatography. Only ECV304 cells showed altered lipid composition in coculture with C6 cells. The fractions of triglycerides and cholesteryl esters (depending on the support filter) were about twice as high in coculture as when the cells were grown alone. Triglyceride fractions reached 13 to 15% of total lipids in coculture. The three cell lines showed an increase in the percentage of long PUFAs with respect to unsaturated FAs, mainly because of an increase in the percentages of arachidonic acid, all cis-7,10,13,16-docosatetraenoic acid, and all cis-7,10,13,16,19-docosapentaenoic acid. It is concluded that glioma C6 cells are able to induce a more in vivo-like FA pattern in BBB cell culture models. However, changes were not significant for the individual PUFAs, and their levels did not reach in vivo values.


Assuntos
Barreira Hematoencefálica/fisiologia , Circulação Cerebrovascular/fisiologia , Endotélio Vascular/fisiologia , Lipídeos/química , Lipídeos/classificação , Neuroglia/fisiologia , Fosfolipídeos/química , Animais , Linhagem Celular , Cromatografia em Camada Fina , Técnicas de Cocultura , Ácidos Graxos não Esterificados/química , Ácidos Graxos Insaturados/análise , Ácidos Graxos Insaturados/química , Modelos Cardiovasculares , Modelos Neurológicos , Neuroglia/química , Ratos
18.
Adv Pharmacol ; 71: 147-63, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25307216

RESUMO

The restrictive nature of the blood-brain barrier means that cellular machinery must be in place to deliver macromolecules to the brain. This is achieved by transcytosis which is more complex than initially supposed, both in terms of structure and regulation. Brain endothelial cells have relatively few pinocytotic vesicles compared to peripheral endothelia but can still deliver macromolecules via one of the three main types of vesicles: the most numerous clathrin-coated vesicles containing adaptor protein complex-2, the smaller caveolae formed from lipid raft domains of the plasma membrane, and the large fluid engulfing macropinocytotic vesicles. Both clathrin-coated vesicles and, to a lesser extent caveolae, endocytose plasma membrane receptors and their specific ligands which include insulin, transferrin, and lipoproteins. This receptor-mediated transcytosis (RMT) delivers the ligands to the brain and enables their receptors to be recycled back to the plasma membrane. However, once endocytosed, the ligands and/or receptors must be directed toward the correct plasma membrane and avoid degradation. How this is achieved has not been well studied although there is an important role for Rab GTPases in targeting vesicles to their correct location and enabling exocytosis. In this chapter, we discuss what is known about regulation of transcytosis in related cells such as the MDCK cell line and where are the gaps in our knowledge of brain endothelial transcytotic regulation. We discuss how RMT has been exploited to deliver therapeutic drugs to the brain and the importance of further investigation in this area to improve drug delivery.


Assuntos
Barreira Hematoencefálica/metabolismo , Transcitose , Animais , Células Endoteliais/metabolismo , Humanos , Preparações Farmacêuticas/metabolismo , Vesículas Transportadoras/metabolismo
19.
J Cereb Blood Flow Metab ; 33(1): 13-21, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23072749

RESUMO

The brain is in many ways an immunologically and pharmacologically privileged site. The blood-brain barrier (BBB) of the cerebrovascular endothelium and its participation in the complex structure of the neurovascular unit (NVU) restrict access of immune cells and immune mediators to the central nervous system (CNS). In pathologic conditions, very well-organized immunologic responses can develop within the CNS, raising important questions about the real nature and the intrinsic and extrinsic regulation of this immune privilege. We assess the interactions of immune cells and immune mediators with the BBB and NVU in neurologic disease, cerebrovascular disease, and intracerebral tumors. The goals of this review are to outline key scientific advances and the status of the science central to both the neuroinflammation and CNS barriers fields, and highlight the opportunities and priorities in advancing brain barriers research in the context of the larger immunology and neuroscience disciplines. This review article was developed from reports presented at the 2011 Annual Blood-Brain Barrier Consortium Meeting.


Assuntos
Barreira Hematoencefálica/imunologia , Doenças do Sistema Nervoso Central/imunologia , Inflamação Neurogênica/imunologia , Animais , Endotélio Vascular/imunologia , Humanos , Neuroimagem , Neuroimunomodulação
20.
Sci Transl Med ; 4(147): 147fs29, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22896674

RESUMO

Gliovascular pathways guide water flow and solute clearance in the brain (Iliff et al., this issue).


Assuntos
Encéfalo/fisiologia , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular/fisiologia , Humanos , Microcirculação/fisiologia , Rede Nervosa/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA