RESUMO
From tumorigenesis to advanced metastatic stages, tumor cells encounter stress, ranging from limited nutrient and oxygen supply within the tumor microenvironment to extrinsic and intrinsic oxidative stress. Thus, tumor cells seize regulatory pathways to rapidly adapt to distinct physiologic conditions to promote cellular survival, including manipulation of mRNA translation. While it is now well established that metastatic tumor cells must up-regulate their antioxidant capacity to effectively spread and that regulation of antioxidant enzymes is imperative to disease progression, relatively few studies have assessed how translation and the hijacking of RNA systems contribute to antioxidant responses of tumors. Here, we review the major stress signaling pathways involved in translational regulation and discuss how these are affected by oxidative stress to promote prosurvival changes that manipulate antioxidant enzyme expression. We describe how tumors elicit these adaptive responses and detail how stress-induced translation can be regulated by kinases, RNA-binding proteins, RNA species, and RNA modification systems. We also highlight opportunities for further studies focused on the role of mRNA translation and RNA systems in the regulation of antioxidant enzyme expression, which may be of particular importance in the context of metastatic progression and therapeutic resistance.
Assuntos
Antioxidantes , Neoplasias , Estresse Oxidativo , Biossíntese de Proteínas , RNA Mensageiro , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Antioxidantes/metabolismo , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais , AnimaisRESUMO
Cells respond to environmental stress by regulating gene expression at the level of both transcription and translation. The â¼50 modified ribonucleotides of the human epitranscriptome contribute to the latter, with mounting evidence that dynamic regulation of transfer RNA (tRNA) wobble modifications leads to selective translation of stress response proteins from codon-biased genes. Here we show that the response of human hepatocellular carcinoma cells to arsenite exposure is regulated by the availability of queuine, a micronutrient and essential precursor to the wobble modification queuosine (Q) on tRNAs reading GUN codons. Among oxidizing and alkylating agents at equitoxic concentrations, arsenite exposure caused an oxidant-specific increase in Q that correlated with up-regulation of proteins from codon-biased genes involved in energy metabolism. Limiting queuine increased arsenite-induced cell death, altered translation, increased reactive oxygen species levels, and caused mitochondrial dysfunction. In addition to demonstrating an epitranscriptomic facet of arsenite toxicity and response, our results highlight the links between environmental exposures, stress tolerance, RNA modifications, and micronutrients.
Assuntos
Arsenitos , Epigênese Genética , Guanina , RNA de Transferência , Transcriptoma , Arsenitos/toxicidade , Linhagem Celular Tumoral , Códon/genética , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Oxirredução , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/genética , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , RNA de Transferência/genéticaRESUMO
As part of the classic central dogma of molecular biology, transfer RNAs (tRNAs) are integral to protein translation as the adaptor molecules that link the genetic code in messenger RNA (mRNA) to the amino acids in the growing peptide chain. tRNA function is complicated by the existence of 61 codons to specify 20 amino acids, with most amino acids coded by two or more synonymous codons. Further, there are often fewer tRNAs with unique anticodons than there are synonymous codons for an amino acid, with a single anticodon able to decode several codons by "wobbling" of the base pairs arising between the third base of the codon and the first position on the anticodon. The complications introduced by synonymous codons and wobble base pairing began to resolve in the 1960s with the discovery of dozens of chemical modifications of the ribonucleotides in tRNA, which, by analogy to the epigenome, are now collectively referred to as the epitranscriptome for not changing the genetic code inherent to all RNA sequences. tRNA modifications were found to stabilize codon-anticodon interactions, prevent misinitiation of translation, and promote translational fidelity, among other functions, with modification deficiencies causing pathological phenotypes. This led to hypotheses that modification-dependent tRNA decoding efficiencies might play regulatory roles in cells. However, it was only with the advent of systems biology and convergent "omic" technologies that the higher level function of synonymous codons and tRNA modifications began to emerge.Here, we describe our laboratories' discovery of tRNA reprogramming and codon-biased translation as a mechanism linking tRNA modifications and synonymous codon usage to regulation of gene expression at the level of translation. Taking a historical approach, we recount how we discovered that the 8-10 modifications in each tRNA molecule undergo unique reprogramming in response to cellular stresses to promote translation of mRNA transcripts with unique codon usage patterns. These modification tunable transcripts (MoTTs) are enriched with specific codons that are differentially decoded by modified tRNAs and that fall into functional families of genes encoding proteins necessary to survive the specific stress. By developing and applying systems-level technologies, we showed that cells lacking specific tRNA modifications are sensitized to certain cellular stresses by mistranslation of proteins, disruption of mitochondrial function, and failure to translate critical stress response proteins. In essence, tRNA reprogramming serves as a cellular coping strategy, enabling rapid translation of proteins required for stress-specific cell response programs. Notably, this phenomenon has now been characterized in all organisms from viruses to humans and in response to all types of environmental changes. We also elaborate on recent findings that cancer cells hijack this mechanism to promote their own growth, metastasis, and chemotherapeutic resistance. We close by discussing how understanding of codon-biased translation in various systems can be exploited to develop new therapeutics and biomanufacturing processes.
Assuntos
Anticódon , Uso do Códon , Humanos , Anticódon/genética , Biossíntese de Proteínas , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Códon/genética , Aminoácidos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
Failure to prevent accumulation of the non-canonical nucleotide inosine triphosphate (ITP) by inosine triphosphate pyrophosphatase (ITPase) during nucleotide synthesis results in misincorporation of inosine into RNA and can cause severe and fatal developmental anomalies in humans. While the biochemical activity of ITPase is well understood, the pathogenic basis of ITPase deficiency and the molecular and cellular consequences of ITP misincorporation into RNA remain cryptic. Here, we demonstrate that excess ITP in the nucleotide pool during in vitro transcription results in T7 polymerase-mediated inosine misincorporation in luciferase RNA. In vitro translation of inosine-containing luciferase RNA reduces resulting luciferase activity, which is only partly explained by reduced abundance of the luciferase protein produced. Using Oxford Nanopore Direct RNA sequencing, we reveal inosine misincorporation to be stochastic but biased largely towards misincorporation in place of guanosine, with evidence for misincorporation also in place of cytidine, adenosine and uridine. Inosine misincorporation into RNA is also detected in Itpa-null mouse embryonic heart tissue as an increase in relative variants compared with the wild type using Illumina RNA sequencing. By generating CRISPR/Cas9 rat H9c2 Itpa-null cardiomyoblast cells, we validate a translation defect in cells that accumulate inosine within endogenous RNA. Furthermore, we observe hindered cellular translation of transfected luciferase RNA containing misincorporated inosine in both wild-type and Itpa-null cells. We therefore conclude that inosine misincorporation into RNA perturbs translation, thus providing mechanistic insight linking ITPase deficiency, inosine accumulation and pathogenesis.
Assuntos
Inosina Trifosfato , RNA , Humanos , Animais , Camundongos , Ratos , Inosina Trifosfato/metabolismo , Pirofosfatases/genética , Inosina , NucleotídeosRESUMO
Mitochondria serves a primary role in energy maintenance but also function to govern levels of mitochondria-derived reactive oxygen species (mROS). ROS have long been established to play a critical role in tumorigenesis and are now considered to be integral to the regulation of diverse signaling networks that drive proliferation, tumor cell survival and malignant progression. mROS can damage DNA, activate oncogenes, block the function of tumor suppressors and drive migratory signaling. The mitochondrion's oxidant scavenging systems including SOD2, Grx2, GPrx, Trx and TrxR are key of the cellular redox tone. These mitochondrial antioxidant systems serve to tightly control the levels of the primary ROS signaling species, H2O2. The coordinated control of mROS levels is also coupled to the activity of the primary H2O2 consuming enzymes of the mitochondria which are reliant on the epitranscriptomic control of selenocysteine incorporation. This review highlights the interplay between these many oncogenic signaling networks, mROS and the H2O2 emitting and consuming capacity of the mitochondria.
Assuntos
Mitocôndrias/metabolismo , Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Progressão da Doença , Metabolismo Energético , Epigênese Genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacosRESUMO
Post-transcriptional modifications of transfer RNAs (tRNAs) have long been recognized to play crucial roles in regulating the rate and fidelity of translation. However, the extent to which they determine global protein production remains poorly understood. Here we use quantitative proteomics to show a direct link between wobble uridine 5-methoxycarbonylmethyl (mcm5) and 5-methoxy-carbonyl-methyl-2-thio (mcm5s2) modifications catalyzed by tRNA methyltransferase 9 (Trm9) in tRNAArg(UCU) and tRNAGlu(UUC) and selective translation of proteins from genes enriched with their cognate codons. Controlling for bias in protein expression and alternations in mRNA expression, we find that loss of Trm9 selectively impairs expression of proteins from genes enriched with AGA and GAA codons under both normal and stress conditions. Moreover, we show that AGA and GAA codons occur with high frequency in clusters along the transcripts, which may play a role in modulating translation. Consistent with these results, proteins subject to enhanced ribosome pausing in yeast lacking mcm5U and mcm5s2U are more likely to be down-regulated and contain a larger number of AGA/GAA clusters. Together, these results suggest that Trm9-catalyzed tRNA modifications play a significant role in regulating protein expression within the cell.
Assuntos
Códon/genética , Proteômica , RNA de Transferência/genética , Proteínas de Saccharomyces cerevisiae/biossíntese , tRNA Metiltransferases/biossíntese , Regulação Fúngica da Expressão Gênica , Processamento de Proteína Pós-Traducional/genética , RNA de Transferência/metabolismo , Ribossomos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Uridina/genética , tRNA Metiltransferases/genéticaRESUMO
The translation of mRNA in all forms of life uses a three-nucleotide codon and aminoacyl-tRNAs to synthesize a protein. There are 64 possible codons in the genetic code, with codons for the â¼20 amino acids and 3 stop codons having 1- to 6-fold degeneracy. Recent studies have shown that families of stress response transcripts, termed modification tunable transcripts (MoTTs), use distinct codon biases that match specifically modified tRNAs to regulate their translation during a stress. Similarly, translational reprogramming of the UGA stop codon to generate selenoproteins or to perform programmed translational read-through (PTR) that results in a longer protein, requires distinct codon bias (i.e., more than one stop codon) and, in the case of selenoproteins, a specifically modified tRNA. In an effort to identify transcripts that have codon usage patterns that could be subject to translational control mechanisms, we have used existing genome and transcript data to develop the gene-specific Codon UTilization (CUT) tool and database, which details all 1-, 2-, 3-, 4- and 5-codon combinations for all genes or transcripts in yeast (Saccharomyces cerevisiae), mice (Mus musculus) and rats (Rattus norvegicus). Here, we describe the use of the CUT tool and database to characterize significant codon usage patterns in specific genes and groups of genes. In yeast, we demonstrate how the CUT database can be used to identify genes that have runs of specific codons (e.g., AGA, GAA, AAG) linked to translational regulation by tRNA methyltransferase 9 (Trm9). We further demonstrate how groups of genes can be analyzed to find significant dicodon patterns, with the 80 Gcn4-regulated transcripts significantly (P<0.00001) over-represented with the AGA-GAA dicodon. We have also used the CUT database to identify mouse and rat transcripts with internal UGA codons, with the surprising finding of 45 and 120 such transcripts, respectively, which is much larger than expected. The UGA data suggest that there could be many more translationally reprogrammed transcripts than currently reported. CUT thus represents a multi-species codon-counting database that can be used with mRNA-, translation- and proteomics-based results to better understand and model translational control mechanisms.
Assuntos
Códon/genética , Biologia Computacional/métodos , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , Animais , Códon de Terminação/genética , Bases de Dados Genéticas , Genoma/genética , Camundongos , Ratos , Saccharomyces cerevisiae/genéticaRESUMO
To identify chemical genetic interactions underlying the mechanism of action of histone deacetylase inhibitors (HDACi) a yeast deletion library was screened for hypersensitive deletion mutants that confer increased sensitivity to the HDACi, CG-1521. The screen demonstrated that loss of GCN5 or deletion of components of the Gcn5 histone acetyltransferase (HAT) complex, SAGA, sensitizes yeast to CG-1521-induced cell death. Expression profiling after CG-1521 treatment reveals increased expression of genes involved in metabolism and oxidative stress response, and oxidative stress response mutants are hypersensitive to CG-1521 treatment. Accumulation of reactive oxygen species and increased cell death are enhanced in the gcn5Δ deletion mutant, and are abrogated by anti-oxidants, indicating a central role of oxidative stress in CG-1521-induced cell death. In human cell lines, siRNA mediated knockdown of GCN5 or PCAF, or chemical inhibition of GCN5 enzymatic activity, increases the sensitivity to CG-1521 and SAHA. These data suggest that the combination of HDAC and GCN5/PCAF inhibitors can be used for cancer treatment.
Assuntos
Histona Acetiltransferases/genética , Inibidores de Histona Desacetilases/toxicidade , Ácidos Hidroxâmicos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Fatores de Transcrição de p300-CBP/genética , Morte Celular , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Biblioteca Gênica , Células HT29 , Histona Acetiltransferases/metabolismo , Humanos , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Deleção de Sequência , Transativadores/genética , Fatores de Transcrição de p300-CBP/metabolismoRESUMO
Cells respond to stress by controlling gene expression at several levels, with little known about the role of translation. Here, we demonstrate a coordinated translational stress response system involving stress-specific reprogramming of tRNA wobble modifications that leads to selective translation of codon-biased mRNAs representing different classes of critical response proteins. In budding yeast exposed to four oxidants and five alkylating agents, tRNA modification patterns accurately distinguished among chemically similar stressors, with 14 modified ribonucleosides forming the basis for a data-driven model that predicts toxicant chemistry with >80% sensitivity and specificity. tRNA modification subpatterns also distinguish SN1 from SN2 alkylating agents, with SN2-induced increases in m(3)C in tRNA mechanistically linked to selective translation of threonine-rich membrane proteins from genes enriched with ACC and ACT degenerate codons for threonine. These results establish tRNA modifications as predictive biomarkers of exposure and illustrate a novel regulatory mechanism for translational control of cell stress response.
Assuntos
Alquilantes/toxicidade , Códon/genética , Oxidantes/toxicidade , Biossíntese de Proteínas/efeitos dos fármacos , RNA de Transferência/genética , Saccharomycetales/efeitos dos fármacos , RNA Fúngico/genética , Saccharomycetales/genéticaRESUMO
tRNA (tRNA) is a key molecule used for protein synthesis, with multiple points of stress-induced regulation that can include transcription, transcript processing, localization and ribonucleoside base modification. Enzyme-catalyzed modification of tRNA occurs at a number of base and sugar positions and has the potential to influence specific anticodon-codon interactions and regulate translation. Notably, altered tRNA modification has been linked to mitochondrial diseases and cancer progression. In this review, specific to Eukaryotic systems, we discuss how recent systems-level analyses using a bioanalytical platform have revealed that there is extensive reprogramming of tRNA modifications in response to cellular stress and during cell cycle progression. Combined with genome-wide codon bias analytics and gene expression studies, a model emerges in which stress-induced reprogramming of tRNA drives the translational regulation of critical response proteins whose transcripts display a distinct codon bias. Termed Modification Tunable Transcripts (MoTTs), (1) we define them as (1) transcripts that use specific degenerate codons and codon biases to encode critical stress response proteins, and (2) transcripts whose translation is influenced by changes in wobble base tRNA modification. In this review we note that the MoTTs translational model is also applicable to the process of stop-codon recoding for selenocysteine incorporation, as stop-codon recoding involves a selective codon bias and modified tRNA to decode selenocysteine during the translation of a key subset of oxidative stress response proteins. Further, we discuss how in addition to RNA modification analytics, the comprehensive characterization of translational regulation of specific transcripts requires a variety of tools, including high coverage codon-reporters, ribosome profiling and linked genomic and proteomic approaches. Together these tools will yield important new insights into the role of translational elongation in cell stress response.
Assuntos
Fenômenos Fisiológicos Celulares , Códon/metabolismo , Biossíntese de Proteínas , RNA de Transferência/metabolismo , Estresse Fisiológico , Aminoacilação , Animais , Humanos , Neoplasias/metabolismo , RNA de Transferência/química , Espécies Reativas de Oxigênio/metabolismoRESUMO
Cells respond to environmental stressors and xenobiotic exposures using regulatory networks to control gene expression, and there is an emerging appreciation for the role of numerous postsynthetic chemical modifications of DNA, RNA, and proteins in controlling transcription and translation of the stress response. In this Perspective, we present a model for a new network that regulates the cellular response to xenobiotic exposures and other stresses in which stress-induced reprogramming of a system of dozens of post-transcriptional modifications on tRNA (tRNA) promotes selective translation of codon-biased mRNAs for critical response proteins. As a product of novel genomic and bioanalytical technologies, this model has strong parallels with the regulatory networks of DNA methylation in epigenetics and the variety of protein secondary modifications comprising signaling pathways and the histone code. When present at the tRNA wobble position, the modified ribonucleosides enhance the translation of mRNAs in which the cognate codons of the tRNAs are highly over-represented and that represent critical stress response proteins. A parallel system may also downregulate the translation of families of proteins. Notably, dysregulation of the tRNA methyltransferase enzymes in humans has also been implicated in cancer etiology, with demonstrated oncogenic and tumor-suppressive effects.
Assuntos
RNA de Transferência/metabolismo , Códon , DNA/química , DNA/metabolismo , Metilação de DNA/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Histonas/química , Histonas/metabolismo , Humanos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , RNA Mensageiro/metabolismo , RNA de Transferência/química , Xenobióticos/toxicidade , tRNA Metiltransferases/metabolismoRESUMO
The role of translational regulation in brown adipogenesis is relatively unknown. Localized translation of mRNAs encoding mitochondrial components enables swift mitochondrial responses, but whether this occurs during brown adipogenesis, which involves massive mitochondrial biogenesis, has not been explored. Here, we used ribosome profiling and RNA-Seq, coupled with cellular fractionation, to obtain spatiotemporal insights into translational regulation. During brown adipogenesis, a translation bias towards G/C-ending codons is triggered first in the mitochondrial vicinity by reactive oxygen species (ROS), which later spreads to the rest of the cell. This translation bias is induced through ROS modulating the activity of the tRNA modification enzyme, ELP3. Intriguingly, functionally relevant mRNAs, including those encoding ROS scavengers, benefit from this bias; in so doing, ROS-induced translation bias both fuels differentiation and concurrently minimizes oxidative damage. These ROS-induced changes could enable sustained mitochondrial biogenesis during brown adipogenesis, and explain in part, the molecular basis for ROS hormesis.
RESUMO
Mitochondrial stress and dysfunction play important roles in many pathologies. However, how cells respond to mitochondrial stress is not fully understood. Here, we examined the translational response to electron transport chain (ETC) inhibition and arsenite induced mitochondrial stresses. Our analysis revealed that during mitochondrial stress, tRNA modifications (namely f5C, hm5C, queuosine and its derivatives, and mcm5U) dynamically change to fine tune codon decoding, usage, and optimality. These changes in codon optimality drive the translation of many pathways and gene sets, such as the ATF4 pathway and selenoproteins, involved in the cellular response to mitochondrial stress. We further examined several of these modifications using targeted approaches. ALKBH1 knockout (KO) abrogated f5C and hm5C levels and led to mitochondrial dysfunction, reduced proliferation, and impacted mRNA translation rates. Our analysis revealed that tRNA queuosine (tRNA-Q) is a master regulator of the mitochondrial stress response. KO of QTRT1 or QTRT2, the enzymes responsible for tRNA-Q synthesis, led to mitochondrial dysfunction, translational dysregulation, and metabolic alterations in mitochondria-related pathways, without altering cellular proliferation. In addition, our analysis revealed that tRNA-Q loss led to a domino effect on various tRNA modifications. Some of these changes could be explained by metabolic profiling. Our analysis also revealed that utilizing serum deprivation or alteration with Queuine supplementation to study tRNA-Q or stress response can introduce various confounding factors by altering many other tRNA modifications. In summary, our data show that tRNA modifications are master regulators of the mitochondrial stress response by driving changes in codon decoding.
RESUMO
Decades of study have revealed more than 100 ribonucleoside structures incorporated as post-transcriptional modifications mainly in tRNA and rRNA, yet the larger functional dynamics of this conserved system are unclear. To this end, we developed a highly precise mass spectrometric method to quantify tRNA modifications in Saccharomyces cerevisiae. Our approach revealed several novel biosynthetic pathways for RNA modifications and led to the discovery of signature changes in the spectrum of tRNA modifications in the damage response to mechanistically different toxicants. This is illustrated with the RNA modifications Cm, m(5)C, and m(2) (2)G, which increase following hydrogen peroxide exposure but decrease or are unaffected by exposure to methylmethane sulfonate, arsenite, and hypochlorite. Cytotoxic hypersensitivity to hydrogen peroxide is conferred by loss of enzymes catalyzing the formation of Cm, m(5)C, and m(2) (2)G, which demonstrates that tRNA modifications are critical features of the cellular stress response. The results of our study support a general model of dynamic control of tRNA modifications in cellular response pathways and add to the growing repertoire of mechanisms controlling translational responses in cells.
Assuntos
Processamento Pós-Transcricional do RNA , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/metabolismo , RNA de Transferência/genética , Saccharomyces cerevisiae/citologia , Estresse FisiológicoRESUMO
The 40-50 RNA modifications of the epitranscriptome regulate posttranscriptional gene expression. Here we show that flaviviruses hijack the host tRNA epitranscriptome to promote expression of pro-viral proteins, with tRNA-modifying ALKBH1 acting as a host restriction factor in dengue virus infection. Early in the infection of human Huh-7 cells, ALKBH1 and its tRNA products 5-formylcytidine (f5C) and 2'-O-methyl-5-formylcytidine (f5Cm) were reduced. ALKBH1 knockdown mimicked viral infection, but caused increased viral NS3 protein levels during infection, while ALKBH1 overexpression reduced NS3 levels and viral replication, and increased f5C and f5Cm. Viral NS5, but not host FTSJ1, increased f5Cm levels late in infection. Consistent with reports of impaired decoding of leucine UUA codon by f5Cm-modified tRNALeu(CAA), ALKBH1 knockdown induced translation of UUA-deficient transcripts, most having pro-viral functions. Our findings support a dynamic ALKBH1/f5Cm axis during dengue infection, with virally-induced remodeling of the proteome by tRNA reprogramming and codon-biased translation.
RESUMO
Correct codon-anticodon pairing promotes translational fidelity, with these interactions greatly facilitated by modified nucleosides found in tRNA. We hypothesized that wobble uridine modifications catalyzed by tRNA methyltransferase 9 (Trm9) are essential for translational fidelity. In support, we have used phenotypic, reporter and protein-based assays to demonstrate increased translational infidelity in trm9Δ Saccharomyces cerevisiae cells. Codon reengineering studies suggest that Trm9-catalyzed tRNA modifications promote fidelity during the translation of specific genes, those rich in arginine and glutamic acid codons from mixed boxes. Using quantitative tRNA modification analysis, we determined that trm9Δ cells are only deficient in 2 of 23 tRNA modifications, with those 2, 5-methoxycarbonylmethyluridine (mcm ( 5) U) and 5-methoxycarbonylmethyl-2-thiouridine (mcm ( 5) s ( 2) U), classified as key determinants of translational fidelity. We also show that in the absence of mcm ( 5) U and mcm ( 5) s ( 2) U, the resulting translational infidelity promotes protein errors and activation of unfolded protein and heat shock responses. These data support a model in which Trm9-catalyzed tRNA modifications promote fidelity during the translation of specific transcripts, with decreased wobble base modification leading to translational infidelity, protein errors and activation of protein stress response pathways.
Assuntos
Biossíntese de Proteínas , Processamento Pós-Transcricional do RNA , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/enzimologia , tRNA Metiltransferases/deficiência , Pareamento de Bases , Sequência de Bases , Códon , Técnicas de Inativação de Genes , Gentamicinas/farmacologia , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico , Resposta a Proteínas não Dobradas , tRNA Metiltransferases/genéticaRESUMO
Cellular responses to DNA damage can prevent mutations and death. In this study, we have used high throughput screens and developed a comparative genomic approach, termed Functionome mapping, to discover conserved responses to UVC-damage. Functionome mapping uses gene ontology (GO) information to link proteins with similar biological functions from different organisms, and we have used it to compare 303, 311 and 288 UVC-toxicity modulating proteins from Escherichia coli, Schizosaccharomyces pombe and Saccharomyces cerevisiae, respectively. We have demonstrated that all three organisms use DNA repair, translation and aerobic respiration associated processes to modulate the toxicity of UVC, with these last two categories highlighting the importance of ribosomal proteins and electron transport machinery. Our study has demonstrated that comparative genomic approaches can be used to identify conserved responses to damage, and suggest roles for translational machinery and components of energy metabolism in optimizing the DNA damage response.
Assuntos
Respiração Celular/genética , Dano ao DNA/genética , Reparo do DNA/genética , Biossíntese de Proteínas/genética , Proteínas/genética , Tolerância a Radiação/genética , Raios Ultravioleta , Escherichia coli/genética , Escherichia coli/efeitos da radiação , Genômica/métodos , Ensaios de Triagem em Larga Escala , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos da radiação , Schizosaccharomyces/genética , Schizosaccharomyces/efeitos da radiação , Deleção de SequênciaRESUMO
Many cancers hijack translation to increase the synthesis of tumor-driving proteins, the messenger mRNAs of which have specific codon usage patterns. Termed 'codon-biased translation' and originally identified in stress response regulation, this mechanism is supported by diverse studies demonstrating how the 50 RNA modifications of the epitranscriptome, specific tRNAs, and codon-biased mRNAs are used by oncogenic programs to promote proliferation and chemoresistance. The epitranscriptome writers METTL1-WDR4, Elongator complex protein (ELP)1-6, CTU1-2, and ALKBH8-TRM112 illustrate the principal mechanism of codon-biased translation, with gene amplifications, increased RNA modifications, and enhanced tRNA stability promoting cancer proliferation. Furthermore, systems-level analyses of 34 tRNA writers and 493 tRNA genes highlight the theme of tRNA epitranscriptome dysregulation in many cancers and identify candidate tRNA writers, tRNA modifications, and tRNA molecules as drivers of pathological codon-biased translation.
Assuntos
Uso do Códon , Neoplasias , Humanos , Biossíntese de Proteínas , Códon/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Neoplasias/genética , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Homólogo AlkB 8 da RNAt Metiltransferase/genéticaRESUMO
Selenium is a naturally found trace element, which provides multiple benefits including antioxidant, anticancer, and antiaging, as well as boosting immunity. One unique feature of selenium is its incorporation as selenocysteine, a rare 21st amino acid, into selenoproteins. Twenty-five human selenoproteins have been discovered, and a majority of these serve as crucial antioxidant enzymes for redox homeostasis. Unlike other amino acids, incorporation of selenocysteine requires a distinctive UGA stop codon recoding mechanism. Although many studies correlating selenium, selenoproteins, aging, and senescence have been performed, it has not yet been explored if the upstream events regulating selenoprotein synthesis play a role in senescence-associated pathologies. The epitranscriptomic writer alkylation repair homolog 8 (ALKBH8) is critical for selenoprotein production, and its deficiency can significantly decrease levels of selenoproteins that are essential for reactive oxygen species (ROS) detoxification, and increase oxidative stress, one of the major drivers of cellular senescence. Here, we review the potential role of epitranscriptomic marks that govern selenocysteine utilization in regulating the senescence program.