Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Environ Manage ; 328: 116908, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36495824

RESUMO

Traditionally coal has been extensively used as a dominating fossil fuel in a wide range of industries due to its abundance. In India, industries like thermal power plants, cement industries, iron, and steel industries along with many captive power plants consume a huge quantity of coal each year to meet energy demand. Coal combustion releases blackish-grey colored fly ash waste is one of the most imperative sources of radionuclides like Radium (226Ra), Thorium (232Th), Potassium (40K) and Uranium (238U). The estimated industrial fly ash is ∼308.416 Million Tonnes (MT) in 2019, considered as an emerging environmental problem. This study represents the first-ever radionuclide emission from Indian fly ash generated across various major industries. The results reveal that the estimated 226Ra, 232Th, 238U, and 40K radionuclides were estimated to be ∼27.473 TBq, ∼44.351 TBq, ∼41.089 TBq, and ∼111.091 TBq respectively. The potential radionuclide hotspot regions across the nation are identified, which could be used as an important tool to assess its impact on the chronic exposure of millions of residents living near these sources. Cleaner or green energy could be the best alternative to combat the unseen health disaster. More effective and safe utilization of fly ash can minimize the hazardous effect of radionuclides emission.


Assuntos
Cinza de Carvão , Combustíveis Fósseis , Radioisótopos/análise , Carvão Mineral/análise , Centrais Elétricas , Índia
2.
Environ Monit Assess ; 195(2): 338, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36705803

RESUMO

Surface ozone is a damaging pollutant for crops and ecosystems, and the ozone-induced crop losses over India remain uncertain and a topic of debate due to a lack of sufficient observations and uncertainties involved in the modeled results. In this study, we have used the observational data from MAPAN (Modelling Air Pollution And Networking) for the first time to estimate the relative yield losses, crop production losses, and economic losses for the two major crops (wheat and rice). The detailed estimation has been done focusing on three individual suburban sites over India (Patiala, Tezpur, and Delhi) and compared with other related studies over the Indian region. We have used the concentration-based metric (M7, 7-h average from 09:00 to 15:59 h) along with the cumulative ozone exposure indices (AOT40, accumulated exposure over a threshold of 40 ppb) and applied the exposure-response (E-R) functions for the calculation of the crop losses. Our study shows that the yearly crop losses can reach the level of 12.4-40.8% and 2.0-11.1% for the wheat and rice crops, respectively, at certain places like Patiala in India. The annual economic loss can be as high as $4.6 million and $0.7 million for wheat and rice crops, respectively, even at individual locations in India. Our estimated %RYL (relative yield loss) lies in the range of 0.3 + /0.6 times the recent regional model estimates which use only the AOT40 metric. Region-specific E-R functions based on factors suitable for the Indian region needs to be developed.


Assuntos
Poluentes Atmosféricos , Oryza , Ozônio , Poluentes Atmosféricos/análise , Ecossistema , Monitoramento Ambiental , Ozônio/análise , Índia , Triticum , Produtos Agrícolas
3.
Environ Res ; 205: 112465, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863985

RESUMO

The ambient biogenic volatile organic compounds (BVOCs), mainly isoprene, are potentially involved in the formation of secondary pollutants, hence, they are significant in terms of air quality and climate. Although the largest sources of BVOCs are tropical regions, the measurements of isoprene in the Indian subcontinent are limited. We conducted the measurements of isoprene, benzene, and toluene at an urban site in a hillocky megacity of India using a high-sensitivity proton transfer reaction quadrupole mass spectrometer (PTR-QMS). The mixing ratios of isoprene were compared with those of aromatic compounds like benzene and toluene, which represent typical anthropogenic VOCs. Isoprene and isoprene/benzene (>5 ppbv ppbv-1) showed higher levels in the pre-monsoon months, most likely due to large emissions by urban vegetation during physiological activities in plants which was enhanced by the high ambient temperatures and solar radiation. While Benzene and toluene showed higher mixing ratios during winter, which were due to shallower boundary layer depths and transport of air masses from polluted Indo-Gangetic Plain during this season. The mixing ratios of VOCs show significant diurnal variation as a result of their different origins and the role of different meteorological parameters. The robust emission ratios of isoprene/benzene obtained from nighttime data were used to separate the non-anthropogenic and anthropogenic isoprene emissions. ∼30% enhancement observed in non-anthropogenic emissions to isoprene from winter to pre-monsoon season when temperatures and solar radiation were stronger, although traffic in the city. Isoprene/benzene ratio at lower temperatures (<25 °C) and solar radiation (<100 W m-2) was predominantly controlled by anthropogenic sources. Overall, toluene and isoprene are the most frequent species in terms of having the highest ozone-forming potential (OFP) values but biogenic isoprene became more important to ozone formation during the afternoon hours in the pre-monsoon months with high air temperatures (>25 °C).


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Butadienos , Monitoramento Ambiental , Hemiterpenos/análise , Índia , Meteorologia , Ozônio/análise , Compostos Orgânicos Voláteis/análise
4.
Environ Monit Assess ; 194(8): 532, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760880

RESUMO

The mass concentrations of PM2.5 were measured at a tropical megacity, Bengaluru, India, for the year 2015. The mean mass concentrations showed large fluctuations on day to day basis with values less than the Indian National Ambient Air Quality Standard (INAAQS) of 60 µg m-3. The observed annual mean mass concentration of 28 ± 11 µg m-3 is also within the INAAQS value of 40 µg m-3. The diurnal trend of PM2.5 concentration showed bimodal distribution, with the primary peak in the morning and the secondary one during the late evening hours. The timing of the peaks matched with rush traffic hours. Strong seasonality is observed in the diurnal concentration of PM2.5 with the highest value during winter (50 ± 22 µg m-3) and the lowest of (11 ± 5 µg m-3) in the monsoon. The weekend PM2.5 mass concentrations were less than those on the weekdays up to a maximum of 100%. The decrease in PM2.5 mass concentration was also observed on the day of the strike when many busses were off the road. Vehicular traffic is suggested as one of the primary contributors of PM2.5 in this region. The health risk assessment in this study, points to ischemic heart disease as the primary cause of PM2.5-induced death.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Índia , Material Particulado/análise
5.
Faraday Discuss ; 226: 502-514, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33244555

RESUMO

Surface ozone is a major pollutant threatening public health, agricultural production and natural ecosystems. While measures to improve air quality in megacities such as Delhi are typically aimed at reducing levels of particulate matter (PM), ozone could become a greater threat if these measures focus on PM alone, as some air pollution mitigation steps can actually lead to an increase in surface ozone. A better understanding of the factors controlling ozone production in Delhi and the impact that PM mitigation measures have on ozone is therefore critical for improving air quality. Here, we combine in situ observations and model analysis to investigate the impact of PM reduction on the non-linear relationship between volatile organic compounds (VOC), nitrogen oxides (NOx) and ozone. In situ measurements of NOx, VOC, and ozone were conducted in Delhi during the APHH-India programme in summer (June) and winter (November) 2018. We observed hourly averaged ozone concentrations in the city of up to 100 ppbv in both seasons. We performed sensitivity simulations with a chemical box model to explore the impacts of PM on the non-linear VOC-NOx-ozone relationship in each season through its effect on aerosol optical depth (AOD). We find that ozone production is limited by VOC in both seasons, and is particularly sensitive to solar radiation in winter. Reducing NOx alone increases ozone, such that a 50% reduction in NOx emissions leads to 10-50% increase in surface ozone. In contrast, reducing VOC emissions can reduce ozone efficiently, such that a 50% reduction in VOC emissions leads to ∼60% reduction in ozone. Reducing PM alone also increases ozone, especially in winter, by reducing its dimming effects on photolysis, such that a 50% reduction in AOD can increase ozone by 25% and it also enhances VOC-limitation. Our results highlight the importance of reducing VOC emissions alongside PM to limit ozone pollution, as well as benefitting control of PM pollution through reducing secondary organic aerosol. This will greatly benefit the health of citizens and the local ecosystem in Delhi, and could have broader application for other megacities characterized by severe PM pollution and VOC-limited ozone production.

6.
Environ Monit Assess ; 193(12): 790, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34762170

RESUMO

This study presents the characteristics of ground level atmospheric ozone (O3) over the rural mid-Brahmaputra Valley region of the northeastern India. Ozone and oxides of nitrogen (NOx = NO + NO2) concentration data were obtained from continuous measurement of O3 and NOx housed at the MAPAN-AQM station at Tezpur University. The meteorological parameters were obtained from the same station. The diel, monthly, and seasonal variations of O3 were studied. The O3-NOx photostationary state (PS) was carefully examined and it was found that the net O3 concertation deviated substantially from the PS during the winter season. The deviation could be attributed to local biomass burning, biogenic VOC emission from forest and agriculture, and long-range transport of peroxyacyl nitrate (PAN). The long-range transport has been ascertained by examining the ventilation coefficients (VC), which correlated with the steep growth of net O3 concentrations in the morning hours. The HYSPLIT air mass back trajectories were used in concentration-weighted trajectory (CWT) analyses of O3 to assess the long-range regional transport of O3 precursors, which positively influenced local O3 concentrations.


Assuntos
Poluentes Atmosféricos , Ozônio , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Humanos , Índia , Óxidos de Nitrogênio/análise , Ozônio/análise
7.
J Environ Sci (China) ; 106: 97-104, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34210443

RESUMO

The world's top ranked mega city Delhi is known for deteriorated air quality. However, the analysis of air pollution data of 5 years (2014-2018) reveals that years 2016 and 2017, which were marked by an unusual delayed withdrawal of monsoon, witnessed an unprecedented extreme levels of toxic PM2.5 particles (≤2.5 µm in diameter) touching a peak level of ∼760 µg/m3 (24 hr average), immediately after the monsoon retreat, surpassing WHO standards by ∼30 time and Indian national standards by ∼12 times, jeopardising lives of its citizens. However, the normal monsoon withdrawal years do not show such extreme levels of pollution. The high resolution WRF-Chem model along with meteorological data are used in this work to understand that how the delayed monsoon withdrawal and associated vagarious anti-cyclonic circulation resulted in trapping externally generated pollutants ceaselessly under colder conditions, leading to historic air quality crisis in landlocked mega city in these selected years. The sensitivity analysis confirmed that when WRF-chem model forced the climatology of normal monsoon year (2015) to simulate the pollution scenario of 2016 and 2017 for the above time period, the crisis subsided. Present findings suggest that such unusual monsoon patterns are on the hook to spur extreme pollution events in recent time.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Cidades , Monitoramento Ambiental , Material Particulado/análise
8.
Environ Res ; 191: 110121, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32835684

RESUMO

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is rapidly spreading across the globe due to its contagion nature. We hereby report the baseline permanent levels of two most toxic air pollutants in top ranked mega cities of India. This could be made possible for the first time due to the unprecedented COVID-19 lockdown emission scenario. The study also unfolds the association of COVID-19 with different environmental and weather markers. Although there are numerous confounding factors for the pandemic, we find a strong association of COVID-19 mortality with baseline PM2.5 levels (80% correlation) to which the population is chronically exposed and may be considered as one of the critical factors. The COVID-19 morbidity is found to be moderately anti-correlated with maximum temperature during the pandemic period (-56%). Findings although preliminary but provide a first line of information for epidemiologists and may be useful for the development of effective health risk management policies.


Assuntos
Poluição do Ar , Infecções por Coronavirus , Pandemias , Pneumonia Viral , Poluição do Ar/análise , Betacoronavirus , COVID-19 , Cidades , Humanos , Índia , SARS-CoV-2 , Tempo (Meteorologia)
9.
J Environ Sci (China) ; 43: 265-272, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27155433

RESUMO

A network of air quality and weather monitoring stations was established under the System of Air Quality Forecasting and Research (SAFAR) project in Delhi. We report observations of ozone (O3), nitrogen oxides (NOx), carbon monoxide (CO) and particulate matter (PM2.5 and PM10) before, during and after the Diwali in two consecutive years, i.e., November 2010 and October 2011. The Diwali days are characterised by large firework displays throughout India. The observations show that the background concentrations of particulate matter are between 5 and 10 times the permissible limits in Europe and the United States. During the Diwali-2010, the highest observed PM10 and PM2.5 mass concentration is as high as 2070µg/m3 and 1620µg/m(3), respectively (24hr mean), which was about 20 and 27 times to National Ambient Air Quality Standards (NAAQS). For Diwali-2011, the increase in PM10 and PM2.5 mass concentrations was much less with their peaks of 600 and of 390µg/m(3) respectively, as compared to the background concentrations. Contrary to previous reports, firework display was not found to strongly influence the NOx, and O3 mixing ratios, with the increase within the observed variability in the background. CO mixing ratios showed an increase. We show that the large difference in 2010 and 2011 pollutant concentrations is controlled by weather parameters.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Férias e Feriados , Poluição do Ar/estatística & dados numéricos , Monóxido de Carbono/análise , Índia , Óxidos de Nitrogênio/análise , Material Particulado/análise
10.
J Hazard Mater ; 470: 134103, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554513

RESUMO

Hazardous pollutants like Mercury (Hg) have emerged as a pressing challenge in recent times where the expanding industrial sector is regarded as the major source in developing country India. In this study, we are trying to identify all possible industrial sectors at district level to quantify Hg emission load across India for the year 2019 using IPCC methodology where the country-specific technological emission factors are used. We have included 5 major sectors out of which emission from coal combustion in thermal power plants accounts for 186.5 t/yr of Hg emission followed by non-ferrous metal production (88.3 t/yr), captive power plants (65.5 t/yr) and fly ash generation from various manufacturing industries (45.9 t/yr). A total of 459.4 t/yr of Hg is released into the ecosystem in 2019 with an uncertainty of ± 48%. This study also estimated that about 233 million people living in and around 10 km periphery of major industrial zones with as many as 17 million people residing near the 10 major hotspots are susceptible to hazardous Hg emissions directly or indirectly. This information would be quite useful in formulating future Hg emission control strategies in India. ENVIRONMENTAL IMPLICATIONS: Present study is the first-of-its-kind quantification of Hg emission load from the Industrial process and many unattended sectors over India, which will not only give an insight into potential hotspots regions across the country but also assess the population exposed to it. It will provide aid in tracking the mercury burden to match the international conventions. The findings suggest that about 233 million people are likely to be exposed to hazardous Hg emissions. It will also enlighten the government, policymakers, stakeholders and people about their mercury footprint and envision protecting the biomes and formulating future control strategies in India.

11.
Sci Total Environ ; 920: 170963, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38367732

RESUMO

The recent La-Nina phase of the El Nino Southern Oscillation (ENSO) phenomenon unusually lasted for third consecutive year, has disturbed global weather and linked to Indian monsoon. However, our understanding on the linkages of such changes to regional air quality is poor. We hereby provide a mechanism that beyond just influencing the meteorology, the interactions between the ocean and the atmosphere during the retreating phase of the La-Niña produced secondary results that significantly influenced the normal distribution of air quality over India through disturbed large-scale wind patterns. The winter of 2022-23 that coincided with retreating phase of the unprecedented triple dip La-Niña, was marred by a mysterious trend in air quality in different climatological regions of India, not observed in recent decades. The unusually worst air quality over South-Western India, whereas relatively cleaner air over the highly polluted North India, where levels of most toxic pollutant (PM2.5) deviating up to about ±30 % from earlier years. The dominance of higher northerly wind in the transport level forces influx and relatively slower winds near the surface, trapping pollutants in peninsular India, thereby notably increasing PM2.5 concentration. In contrast, too feeble western disturbances, and unique wind patterns with the absence of rain and clouds and faster ventilation led to a significant improvement in air quality in the North. The observed findings are validated by the chemical-transport model when forced with the climatology of the previous year. The novelty of present research is that it provides an association of air quality with climate change. We demonstrate that the modulated large-scale wind patterns linked to climatic changes may have far-reaching consequences even at a local scale leading to unusual changes in the distribution of air pollutants, suggesting ever-stringent emission control actions.

12.
Sci Total Environ ; 861: 160361, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36464043

RESUMO

Near real-time monitoring of major air pollutants, i.e., particulate matter (PM10, PM2.5, PM1), trace gases (O3, CO, NO, NO2, NOx, NH3, CO2, SO2) and Volatile Organic Compounds (VOCs: benzene, ethylbenzene, m-, p-xylene, o-xylene and toluene) along with climatological parameters was done in eight-cities field campaigns during the rabi (wheat) crop residue burning period in the northwest of Indo-Gangetic Plain (IGP) region. The phase-wise monitoring was done at eight locations representing rural, semi-urban and urban backgrounds. During the whole campaign, the semi-urban site (Sirsa) observed the highest average concentration of PM10 (226 ± 111 µg m-3) and PM2.5 (91 ± 67 µg m-3). The urban site (Chandigarh) reported the minimum concentrations of all the three size fractions of particulate matter with PM10 as 89 ± 54 µg m-3, PM2.5 as 42 ± 22 µg m-3 and PM1 as 20 ± 13 µg m-3 where the monitoring was done in the early phase of the campaign. The highest VOC concentration was recorded at the semi-urban (Sirsa) site, whereas the lowest was at a rural location (Fatehgarh Sahib). NH3 concentration was observed highest in rural sites (31.7 ± 29.8 ppbv), which can be due to the application of fertilizers in agricultural activities. Visible Infrared Imaging Radiometer Suite (VIIRS) based fire and thermal anomalies, along with HYSPLIT back trajectory analysis, show that major air masses over monitoring sites (22 %-70 %) were from the rabi crop residue burning regions. The characteristic ratios and Principal component analysis (PCA) results show that diverse sources, i.e., emissions from crop residue burning, solid biomass fuels, vehicles and industries, majorly degrade the regional air quality. This multi-city study observed that semi-urban regions have the most compromised air quality during the rabi crop residue burning and need attention to address the air quality issues in the IGP region.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Cidades , Biomassa , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Material Particulado/análise , Estações do Ano , Índia
13.
Chemosphere ; 326: 138474, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36958496

RESUMO

The prediction of surface ozone is essential attributing to its impact on human and environmental health. Volatile organic compounds (VOCs) are crucial in driving ozone concentration; particularly in urban areas where VOC limited regimes are prominent. The limited measurements of VOCs, however, hinder assessing the VOC-ozone relationship. This work applies machine learning (ML) algorithms for temporal forecasting of surface ozone over a metropolitan city in India. The availability of continuous VOCs measurement data along with meteorology and other pollutants during 2014-2016 makes it possible to deduce the influence of various input parameters on surface ozone prediction. After evaluating the best ML model for ozone prediction, simulations were carried out using varied input combinations. The combination with isoprene, meteorology, NOx, and CO (Isop + MNC) was the best with RMSE 4.41 ppbv and MAPE 6.77%. A season-wise comparison of simulations having all data, only meteorological data and Isop + MNC as input showed that Isop + MNC simulation gives the best results during the summer season (RMSE: 5.86 ppbv, MAPE: 7.05%). This shows the increased ability of the model to capture ozone peaks (high ozone during summer) relatively better when isoprene data is used. The overall results highlight that using all available data doesn't necessarily give best prediction results; also critical thinking is essential when evaluating the model results.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Humanos , Ozônio/análise , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental/métodos , Aprendizado de Máquina , China
14.
Environ Res Health ; 1(2): 021003, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36873423

RESUMO

Climate change-driven temperature increases worsen air quality in places where coal combustion powers electricity for air conditioning. Climate solutions that substitute clean and renewable energy in place of polluting coal and promote adaptation to warming through reflective cool roofs can reduce cooling energy demand in buildings, lower power sector carbon emissions, and improve air quality and health. We investigate the air quality and health co-benefits of climate solutions in Ahmedabad, India-a city where air pollution levels exceed national health-based standards-through an interdisciplinary modeling approach. Using a 2018 baseline, we quantify changes in fine particulate matter (PM2.5) air pollution and all-cause mortality in 2030 from increasing renewable energy use (mitigation) and expanding Ahmedabad's cool roofs heat resilience program (adaptation). We apply local demographic and health data and compare a 2030 mitigation and adaptation (M&A) scenario to a 2030 business-as-usual (BAU) scenario (without climate change response actions), each relative to 2018 pollution levels. We estimate that the 2030 BAU scenario results in an increase of PM2.5 air pollution of 4.13 µg m-3 from 2018 compared to a 0.11 µg m-3 decline from 2018 under the 2030 M&A scenario. Reduced PM2.5 air pollution under 2030 M&A results in 1216-1414 fewer premature all-cause deaths annually compared to 2030 BAU. Achievement of National Clean Air Programme, National Ambient Air Quality Standards, or World Health Organization annual PM2.5 Air Quality Guideline targets in 2030 results in up to 6510, 9047, or 17 369 fewer annual deaths, respectively, relative to 2030 BAU. This comprehensive modeling method is adaptable to estimate local air quality and health co-benefits in other settings by integrating climate, energy, cooling, land cover, air pollution, and health data. Our findings demonstrate that city-level climate change response policies can achieve substantial air quality and health co-benefits. Such work can inform public discourse on the near-term health benefits of mitigation and adaptation.

15.
Environ Pollut ; 305: 119295, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35439603

RESUMO

Six years of data (2012-2017) at an urban site-Srinagar in the Northwest Himalaya were used to investigate temporal variability, meteorological influences, source apportionment and potential source regions of BC. The daily BC concentration varies from 0.56 to 40.16 µg/m3 with an inter-annual variation of 4.20-7.04 µg/m3 and is higher than majority of the Himalayan urban locations. High mean annual BC concentration (6.06 µg/m3) is attributed to the high BC observations during winter (8.60 µg/m3) and autumn (8.31 µg/m3) with a major contribution from Nov (13.88 µg/m3) to Dec (13.4 µg/m3). A considerable inter-month and inter-seasonal BC variability was observed owing to the large changes in synoptic meteorology. Low BC concentrations were observed in spring and summer (3.14 µg/m3 and 3.21 µg/m3), corresponding to high minimum temperatures (6.6 °C and 15.7 °C), wind speed (2.4 and 1.6 m/s), ventilation coefficient (2262 and 2616 m2/s), precipitation (316.7 mm and 173.3 mm) and low relative humidity (68% and 62%). However, during late autumn and winter, frequent temperature inversions, shallow PBL (173-1042 m), stagnant and dry weather conditions cause BC to accumulate in the valley. Through the observation period, two predominant diurnal BC peaks were observed at ⁓9:00 h (7.75 µg/m3) and ⁓21:00 h (6.67 µg/m3). Morning peak concentration in autumn (11.28 µg/m3) is ⁓2-2.5 times greater than spring (4.32 µg/m3) and summer (5.23 µg/m3), owing to the emission source peaks and diurnal boundary layer height. Diurnal BC concentration during autumn and winter is 65% and 60% higher than spring and summer respectively. During autumn and winter, biomass burning contributes approximately 50% of the BC concentration compared to only 10% during the summer. Air masses transport considerable BC from the Middle East and northern portions of South Asia, especially the Indo-Gangetic Plains, to Srinagar, with serious consequences for climate, human health, and the environment.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , Altitude , Carbono/análise , Monitoramento Ambiental , Humanos , Material Particulado/análise , Estações do Ano , Fuligem/análise
16.
Photochem Photobiol ; 98(6): 1312-1322, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35363894

RESUMO

Rapid infrastructure development, increased population, shift in land use practices and higher vehicular emissions have all influenced Ozone (O3 ) production through its precursor gases in southern megacity, Bengaluru, India. We have investigated the photochemistry using hourly measurements of O3 and associated precursor gases conducted in Bengaluru during January to December 2019. The rate of formation of O3 is analyzed for Bengaluru for the first time using a photochemical model involving NOx cycle. On the diurnal scale, O3 showed a midday peak (1200-1500 IST), while its precursors showed a bimodal trend with peaks at 0900 IST and 2100 IST. The photolytic rate constants for j NO 2 and j O 3 were derived from the tropospheric ultraviolet and visible (TUV) radiation model. Using the photolytic rate constants for j NO 2 and j O 3 under the triad NO-NO2 -O3 , photostationary state (PSS), Leighton ratio (Ф) and its deviations from unity were estimated over Bengaluru. Positive anomalies (Φ > 1) were obtained, and the computed Φ was utilized to determine the total mixing ratios of the peroxy radical (PO2 ). The seasonal variation in j O 3 revealed that in the presence of intense solar radiation and NOx, VOCs, CO and NMVOCs in the mixing layer, O3 forms photochemically over the surface.


Assuntos
Poluentes Atmosféricos , Ozônio , Ozônio/análise , Poluentes Atmosféricos/análise , Fotoquímica , Monitoramento Ambiental , Estações do Ano
17.
Chemosphere ; 298: 134271, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35276107

RESUMO

The world's worst outbreak, the second COVID-19 wave, not only unleashed unprecedented devastation of human life, but also made an impact of lockdown in the Indian capital, New Delhi, in particulate matter (PM: PM2.5 and PM10) virtually ineffective during April to May 2021. The air quality remained not only unabated but also was marred by some unusual extreme pollution events. SAFAR-framework model simulations with different sensitivity experiments were conducted using the newly developed lockdown emission inventory to understand various processes responsible for these anomalies in PM. Model results well captured the magnitude and variations of the observed PM before and after the lockdown but significantly underestimated their levels in the initial period of lockdown followed by the first high pollution event when the mortality counts were at their peak (∼400 deaths/day). It is believed that an unaccounted emission source was playing a leading role after balancing off the impact of curtailed lockdown emissions. The model suggests that the unprecedented surge in PM10 (690 µg/m3) on May 23, 2021, though Delhi was still under lockdown, was associated with large-scale dust transport originating from the north west part of India combined with the thunderstorm. The rainfall and local dust lifting played decisive roles in other unusual events. Obtained results and the proposed interpretation are likely to enhance our understanding and envisaged to help policymakers to frame suitable strategies in such kinds of emergencies in the future.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar/análise , COVID-19/epidemiologia , Cidades , Controle de Doenças Transmissíveis , Poeira , Monitoramento Ambiental , Humanos , Material Particulado/análise , SARS-CoV-2
18.
Urban Clim ; 38: 100913, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34258181

RESUMO

We explore the association of biomass-induced black carbon aerosolized virus with COVID-19 in one of the top-ranked polluted hot spot regions of the world, Delhi, at the time when other confounding factors were almost stable and the pandemic wave was on the declining stage. Delhi was worst affected by COVID-19. However, when it was fast returning back to normal after about 6 months with minimum fatalities, it suddenly encountered a reversal with a 10 fold increase in infection counts, coinciding with the onset of the stubble burning period in neighbouring states. We hereby report that the crop residue burning induced lethal aged Black carbon-rich particles which engulfs Delhi during the post-monsoon months of October-November are strongly associated with COVID-19 and largely responsible for the sudden surge. It is found that the virus efficacy is not necessarily related to any particulates but it is more of source-based toxicity of its component where the virus is piggybacking. We conclude that the aged biomass BC particles tend to aggregate and react with other compounds to grow in size, providing temporary habitat to viruses leading to the rapid increase in COVID-19 cases which declined after the crop burning stopped.

19.
Sci Total Environ ; 796: 148903, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34274681

RESUMO

The emissions from agricultural activities significantly impact the air quality at local (rural) and regional scales. The study monitored the near real-time concentrations of emission from agrarian activities, i.e., particulate matter (PM10, PM2.5, PM1), traces gases and VOCs, along with meteorological parameters in a rural area of Indo-Gangetic Plains (IGP). As different agricultural activities take place simultaneously in the region, sampling period was divided into three phases based on regional agricultural activities as HB (harvesting-burning) period, BTS (burning-tillage-sowing) period and PFS (pesticide-fertilizer spray) period. The highest mean concentration (± standard deviation) of particulate matter, i.e., PM10, PM2.5, PM1 was observed during HB period as 151.0 ± 52.3, 94.7 ± 32.9 and 41.0 ± 16.3 µgm-3 followed by PFS as 121.7 ± 49.1, 87.8 ± 35.5 and 39.7 ± 15.7 µgm-3 and BTS period as 92.5 ± 38.8, 63.5 ± 28.4, 26.6 ± 10.9 µgm-3 respectively. The mean concentration of NO (8.4 ± 3.4 ppb), SO2 (5.8 ± 1.2 ppb), CO (0.9 ± 0.3 ppm), O3 (12.5 ± 3.3 ppb) was also highest during harvesting-burning period. In the burning-tillage-sowing period, the mean concentration of NO2 (31.0 ± 2.9 ppb), benzene (2.8 ± 0.6 µgm-3) and o-xylene (2.1 ± 0.3 µgm-3) were highest. The data of crop residue burning fires showed that during HB period, around 34,683 active fires were there in the region (state of Punjab), whereas, in studied district, the number of fire counts were 635. During the HB period, around 70% of the air masses were originated within a 500 km area, whereas during the BTS and PFS period, 75% and 86% of air masses were originated from 500 km region, respectively. The ratio of PM2.5/PM10 during study period ranged from 0.63 to 0.72 and was observed highest during PFS period. The current study investigated the influence of agricultural activities on air quality during post-monsoon season in a rural area of Indo-Gangetic Plains to understand the impact of these activities on air quality in the region and plan mitigation strategies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Material Particulado/análise , Estações do Ano
20.
Sci Total Environ ; 799: 149364, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34371409

RESUMO

Five-year (2013-2017) particulate matter (PM) data observed at an urban site, Srinagar, Kashmir Himalaya, India was used to examine the temporal variability, meteorological impacts and potential source regions of PM. The daily mean PM10 and PM2.5 concentration was 135 ± 112 µg/m3 and 87 ± 93 µg/m3 respectively with significant intra- and inter-daily variation. The annual PM10 and PM2.5 concentration was 2.0-3.2 and 1.7-2.8 times higher than the annual Indian National Ambient Air Quality Standards (PM10 = 60 µg/m3 and PM2.5 = 40 µg/m3). PM concentration shows a bimodal diurnal pattern with morning and evening peaks, which coincide with the increased anthropogenic activity and shallow planetary boundary layer (PBL). The combined effect of the low temperature, low wind speed, shallow and stable PBL and geomorphic setup of Kashmir valley leads to the accumulation of particulate pollution during autumn and winter and the converse meteorological conditions leads to dispersion, dilution and deposition during spring and summer. High precipitation rate (>15 mm/day) removes the coarse particles (PM10) more efficiently than fine particles (PM2.5), while as the moderate to high humid conditions (55-95%) leads to the accumulation and growth of more PM. It was observed that ~80% of the air masses arriving at the site during spring, autumn and winter are westerlies. Source contribution analysis revealed that highly potential source regions of PM at the site are neighboring Pakistan, Afghanistan, parts of Iran and Trans-Gangetic Plains, which could contribute high concentration of the PM10 (>250 µg/m3) and PM2.5 (>150 µg/m3) during autumn and winter. The high PM load observed at the site during autumn and winter, with major contribution from the anthropogenic source emissions like biomass and coal burning, fossil fuel combustion and suspension of road dust, is aggravated by the geomorphic and meteorological setup of the Kashmir valley.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Carvão Mineral , Poeira/análise , Monitoramento Ambiental , Meteorologia , Material Particulado/análise , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA