Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nanomaterials (Basel) ; 14(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276733

RESUMO

THz radiation emitted by ferromagnetic/non-magnetic bilayers is a new emergent field in ultra-fast spin physics phenomena with a lot of potential for technological applications in the terahertz (THz) region of the electromagnetic spectrum. The role of antiferromagnetic layers in the THz emission process is being heavily investigated at the moment. In this work, we fabricate trilayers in the form of Co/CoO/Pt and Ni/NiO/Pt with the aim of studying the magnetic properties and probing the role of very thin antiferromagnetic interlayers like NiO and CoO in transporting ultrafast spin current. First, we reveal the static magnetic properties of the samples by using temperature-dependent Squid magnetometry and then we quantify the dynamic properties with the help of ferromagnetic resonance spectroscopy. We show magnetization reversal that has large exchange bias values and we extract enhanced damping values for the trilayers. THz time-domain spectroscopy examines the influence of the antiferromagnetic interlayer in the THz emission, showing that the NiO interlayer in particular is able to transport spin current.

2.
Opt Lett ; 38(12): 2156-8, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23939008

RESUMO

We designed and implemented a gradient index metasurface for in-plane focusing of confined terahertz (THz) surface waves. We measured the spatial propagation of the surface waves by two-dimensional mapping of the complex electric field using a THz near-field spectroscope. The surface waves were focused to a diameter of 500 µm after a focal length of approximately 2 mm. In the focus, we measured a field amplitude enhancement of a factor of 3.

3.
iScience ; 25(5): 104319, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35602944

RESUMO

Recent developments in nanomagnetism and spintronics have enabled the use of ultrafast spin physics for terahertz (THz) emission. Spintronic THz emitters, consisting of ferromagnetic (FM)/non-magnetic (NM) thin film heterostructures, have demonstrated impressive properties for the use in THz spectroscopy and have great potential in scientific and industrial applications. In this work, we focus on the impact of the FM/NM interface on the THz emission by investigating Fe/Pt bilayers with engineered interfaces. In particular, we intentionally modify the Fe/Pt interface by inserting an ordered L10-FePt alloy interlayer. Subsequently, we establish that a Fe/L10-FePt (2 nm)/Pt configuration is significantly superior to a Fe/Pt bilayer structure, regarding THz emission amplitude. The latter depends on the extent of alloying on either side of the interface. The unique trilayer structure opens new perspectives in terms of material choices for the next generation of spintronic THz emitters.

4.
iScience ; 25(7): 104615, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35800756

RESUMO

Terahertz emission from ferromagnetic/non-magnetic spintronic heterostructures had been demonstrated as pump wavelength-independent. We report, however, the pump wavelength dependence of terahertz emission from an optimized Fe/Pt spintronic bilayer on MgO substrate. Maximum terahertz generation per total pump power was observed in the 1200- to 1800-nm pump wavelength range, and a marked decrease in the terahertz emission efficiency beyond 2500 nm (pump photon energies <0.5 eV) suggests a ∼0.35-eV threshold pump photon energy for effective spintronic terahertz emission. The inferred threshold is supported by previous theoretical results on the onset energy of significant spin-filtering at the Fe-Pt interface, and confirmed by Fe/Pt electronic structure calculations in this present work. The results of terahertz time-domain emission spectroscopy show the sensitivity of spintronic terahertz emission to both the optical absorptance of the heterostructure and the energy-dependent spin transport, as dictated by the properties of the metallic thin films.

5.
Opt Express ; 19(11): 10269-77, 2011 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-21643284

RESUMO

We have constructed a pulsed THz imaging system based on the triangulation method. The system is capable of stand-off measurements, especially of retrieving the refractive index in a non-tactile manner even if the thickness of the object is unknown. The distance between emitter and imaged object for the presented measurements was 1.3m. We have measured a variety of samples in order to determine the capabilities and to optimize the optical properties of the instrument.

6.
Opt Express ; 19(23): 23573-80, 2011 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-22109237

RESUMO

We report hybridization induced transparency (HIT) in a composite medium consisting of a metamaterial and a dielectric. We develop an analytic model that explains HIT by coherent coupling between the hybridized local fields of the metamaterial and the dielectric or an atomic system in general. In a proof-of-principle experiment, we evidence HIT in a split ring resonator metamaterial that is coupled to α-lactose monohydrate. Both, the analytic model and numerical calculations confirm and explain the experimental observations. HIT can be considered as a hybrid analogue to electromagnetically induced transparency (EIT) and plasmon-induced transparency (PIT).

7.
Chemphyschem ; 12(15): 2695-705, 2011 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-21735510

RESUMO

The techniques and methods employed in the spectroscopic characterization of gases, liquids, and solids in the terahertz frequency range are reviewed. Terahertz time-domain spectroscopy is applied to address a broadband frequency range between 100 GHz and 5 THz with a sub-10 GHz frequency resolution. The unique spectral absorption features measured can be efficiently used in material identification and sensing. Possibilities and limitations of fundamental and industrial applications are discussed.

8.
Opt Express ; 18(6): 5595-601, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20389575

RESUMO

We present a pulsed THz Imaging System with a line focus intended to speed up measurements. A balanced 1-D detection scheme working with two industrial line-scan cameras is used. The instrument is implemented without the need for an amplified laser system, increasing the industrial applicability. The instrumental characteristics are determined.


Assuntos
Aumento da Imagem/instrumentação , Interpretação de Imagem Assistida por Computador/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Imagem Terahertz/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Indústrias/instrumentação
9.
Opt Lett ; 35(9): 1320-2, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20436555

RESUMO

We present experimental and numerical studies of localized terahertz surface waves on a subwavelength-thick metamaterial film consisting of in-plane split-ring resonators. A simple and intuitive model is derived that describes the propagation of surface waves as guided modes in a waveguide filled with a Lorentz-like medium. The effective medium model allows us to deduce the dispersion relation of the surface waves, in excellent agreement with the numerical data obtained from 3D full-wave calculations. Both the accuracy of the analytical model and the numerical calculations are confirmed by spectroscopic terahertz time-domain measurements.

10.
Opt Express ; 17(21): 18590-5, 2009 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-20372589

RESUMO

We present two types of metamaterial-based spectral bandpass filters for the terahertz (THz) frequency range. The metamaterials are specifically designed to operate for waves at normal incidence and to be independent of the field polarization. The functional structures are embedded in films of benzocyclobutene (BCB) resulting in large-area, free-standing and flexible membranes with low intrinsic loss. The proposed filters are investigated by THz time-domain spectroscopy and show a pronounced transmission peak with over 80% amplitude transmission in the passband and a transmission rejection down to the noise level in the stopbands. The measurements are supported by numerical simulations which evidence that the high transmission response is related to the excitation of trapped modes.

11.
Opt Express ; 17(2): 819-27, 2009 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-19158896

RESUMO

We present a polarization-independent metamaterial design for the construction of electrically tunable terahertz (THz) devices. The implemented structure consists of an array of gold crosses fabricated on top of an n-doped gallium arsenide (GaAs) layer. Utilizing THz time-domain spectroscopy, we show that the electric resonance and thus the transmission properties of the cross structure can be tuned by an externally applied bias voltage. We further demonstrate the fast amplitude modulation of a propagating THz wave for modulation frequencies up to 100 kHz.

12.
Sci Rep ; 9(1): 13348, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527771

RESUMO

Spintronic ferromagnetic/non-magnetic heterostructures are novel sources for the generation of THz radiation based on spin-to-charge conversion in the layers. The key technological and scientific challenge of THz spintronic emitters is to increase their intensity and frequency bandwidth. Our work reveals the factors to engineer spintronic Terahertz generation by introducing the scattering lifetime and the interface transmission for spin polarized, non-equilibrium electrons. We clarify the influence of the electron-defect scattering lifetime on the spectral shape and the interface transmission on the THz amplitude, and how this is linked to structural defects of bilayer emitters. The results of our study define a roadmap of the properties of emitted as well as detected THz-pulse shapes and spectra that is essential for future applications of metallic spintronic THz emitters.

13.
Opt Express ; 16(9): 6736-44, 2008 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-18545376

RESUMO

We present a bulk metamaterial with negative refractive index in the terahertz frequency range. The structure is composed of pairs of metallic crosses embedded in Benzocyclobutene (BCB). The design is specifically chosen to provide a low-loss, free-standing material which operates under normal incidence and independently of the polarization of the incident radiation. These qualities allow the fabrication of 3D structures by mechanical stacking of multiple thin films.


Assuntos
Óptica e Fotônica , Refratometria , Simulação por Computador , Eletricidade , Análise Numérica Assistida por Computador
14.
Sci Rep ; 8(1): 1311, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29358715

RESUMO

We report on generation of pulsed broadband terahertz radiation utilizing the inverse spin hall effect in Fe/Pt bilayers on MgO and sapphire substrates. The emitter was optimized with respect to layer thickness, growth parameters, substrates and geometrical arrangement. The experimentally determined optimum layer thicknesses were in qualitative agreement with simulations of the spin current induced in the ferromagnetic layer. Our model takes into account generation of spin polarization, spin diffusion and accumulation in Fe and Pt and electrical as well as optical properties of the bilayer samples. Using the device in a counterintuitive orientation a Si lens was attached to increase the collection efficiency of the emitter. The optimized emitter provided a bandwidth of up to 8 THz which was mainly limited by the low-temperature-grown GaAs (LT-GaAS) photoconductive antenna used as detector and the pulse length of the pump laser. The THz pulse length was as short as 220 fs for a sub 100 fs pulse length of the 800 nm pump laser. Average pump powers as low as 25 mW (at a repetition rate of 75 MHz) have been used for terahertz generation. This and the general performance make the spintronic terahertz emitter compatible with established emitters based on optical rectification in nonlinear crystals.

15.
Rev Sci Instrum ; 82(5): 053102, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21639487

RESUMO

Photonic terahertz (THz) technology using femtosecond (fs) lasers has a great potential in a wide range of applications, such as non-destructive testing of objects or spectroscopic identification of chemical substances. For industrial purposes, a THz system has to be compact and easily implementable into the particular application. Therefore, fiber-coupled THz systems are the key to a widespread use of THz technology. In order to have flexible THz emitters and detectors near infrared fs light pulses have to be sent through optical fibers of considerable length. As a consequence, the fiber's dispersion has to be compensated for and nonlinear effects in the fiber have to be minimized. A fiber-based THz time-domain spectroscopy system of high stability, flexibility, and portability is presented here.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(4 Pt 2): 048601, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20481865

RESUMO

The metamaterial presented by Yan [Phys. Rev. E 77, 056604 (2008)] is claimed to exhibit a superwide band of negative refraction. However, a retrieval procedure of the refractive index including the phase advance of a propagating plane wave shows that the material provides two distinct narrow bands with a negative refractive index instead of a single superwide band and thus the central claim of the paper is incorrect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA