Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hered ; 112(4): 313-327, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33860294

RESUMO

A current challenge in the fields of evolutionary, ecological, and conservation genomics is balancing production of large-scale datasets with additional training often required to handle such datasets. Thus, there is an increasing need for conservation geneticists to continually learn and train to stay up-to-date through avenues such as symposia, meetings, and workshops. The ConGen meeting is a near-annual workshop that strives to guide participants in understanding population genetics principles, study design, data processing, analysis, interpretation, and applications to real-world conservation issues. Each year of ConGen gathers a diverse set of instructors, students, and resulting lectures, hands-on sessions, and discussions. Here, we summarize key lessons learned from the 2019 meeting and more recent updates to the field with a focus on big data in conservation genomics. First, we highlight classical and contemporary issues in study design that are especially relevant to working with big datasets, including the intricacies of data filtering. We next emphasize the importance of building analytical skills and simulating data, and how these skills have applications within and outside of conservation genetics careers. We also highlight recent technological advances and novel applications to conservation of wild populations. Finally, we provide data and recommendations to support ongoing efforts by ConGen organizers and instructors-and beyond-to increase participation of underrepresented minorities in conservation and eco-evolutionary sciences. The future success of conservation genetics requires both continual training in handling big data and a diverse group of people and approaches to tackle key issues, including the global biodiversity-loss crisis.


Assuntos
Big Data , Conservação dos Recursos Naturais , Evolução Biológica , Genética Populacional , Genômica , Humanos
2.
Mol Phylogenet Evol ; 85: 88-96, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25681678

RESUMO

All extant equid species are grouped in a single genus - Equus. Among those, ass-like equids have remained particularly unstudied and their phylogenetic relations were poorly understood, most probably because they inhabit extreme environments in remote geographic areas. To gain further insights into the evolutionary history of ass-like equids, we have used a non-invasive sampling approach to collect representative fecal samples of extant African and Asiatic ass-like equid populations across their distribution range and mitochondrial DNA (mtDNA) sequencing analyses to examine intraspecific genetic diversity and population structure, and to reconstruct phylogenetic relations among wild ass species/subspecies. Sequence analyses of 410 base pairs of the fast evolving mtDNA control region identified the Asiatic wild ass population of Kalamaili (China) as the one displaying the highest diversity among all wild ass populations. Phylogenetic analyses of complete cytochrome b sequences revealed that African and Asiatic wild asses shared a common ancestor approximately 2.3Mya and that diversification in both groups occurred much latter, probably driven by climatic events during the Pleistocene. Inferred genetic relationships among Asiatic wild ass species do not support E. kiang monophyly, highlighting the need of more extensive studies in order to clarify the taxonomic status of species/subspecies belonging to this branch of the Equus phylogeny. These results highlight the importance of re-assessing the evolutionary history of ass-like equid species, and urge to extend studies at the population level to efficiently design conservation and management actions for these threatened species.


Assuntos
Evolução Biológica , Equidae/classificação , Variação Genética , Filogenia , África , Animais , Teorema de Bayes , China , Citocromos b/genética , DNA Mitocondrial/genética , Espécies em Perigo de Extinção , Equidae/genética , Genética Populacional , Haplótipos , Modelos Genéticos , Análise de Sequência de DNA
3.
Genet Mol Biol ; 37(1): 7-14, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24688285

RESUMO

Polymorphisms in the regulatory region of the CCR5 gene affect protein expression and modulate the progress of HIV-1 disease. Because of this prominent role, variations in this gene have been under differential pressure and their frequencies vary among human populations. The CCR2V64I mutation is tightly linked to certain polymorphisms in the CCR5 gene. The current Omani population is genetically diverse, a reflection of their history as traders who ruled extensive regions around the Indian Ocean. In this study, we examined the CCR2-CCR5 haplotypes in Omanis and compared the patterns of genetic diversity with those of other populations. Blood samples were collected from 115 Omani adults and genomic DNA was screened to identify the polymorphic sites in the CCR5 gene and the CCR2V64I mutation. Four minor alleles were common: CCR5-2554T and CCR5-2086G showed frequencies of 49% and 46%, respectively, whereas CCR5-2459A and CCR5-2135C both had a frequency of 36%. These alleles showed moderate levels of heterozygosity, indicating that they were under balancing selection. However, the well-known allele CCR5Δ32 was relatively rare. Eleven haplotypes were identified, four of which were common: HHC (46%), HHE (20%), HHA (14%) and HHF*2 (12%).

4.
Mycologia ; 116(1): 1-16, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38133903

RESUMO

This study explored a heathland region in Portugal, and through morphology, biogeography, and multilocus phylogeny, two new species of Inocybaceae are described. The first species, Inocybe iberilepora, belongs to "I. flocculosa group," whereas the second species, Inocybe phaeosquamosa, belongs to a relatively isolated and understudied clade, distantly related to I. furfurea and allies. Both species are tied to a west Mediterranean distribution and ecology, associating with the local Cistaceae ecosystems. By characterizing these new species, our research contributes to the understanding of European Funga and enriches the knowledge of the genus Inocybe on a global scale.


Assuntos
Agaricales , Cistaceae , Ecossistema , Filogenia , Portugal
5.
Immunogenetics ; 65(10): 737-48, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23846851

RESUMO

The coexistence of wild boars and domestic pigs across Eurasia makes it feasible to conduct comparative genetic or genomic analyses for addressing how genetically different a domestic species is from its wild ancestor. To test whether there are differences in patterns of genetic variability between wild and domestic pigs at immunity-related genes and to detect outlier loci putatively under selection that may underlie differences in immune responses, here we analyzed 54 single-nucleotide polymorphisms (SNPs) of 19 immunity-related candidate genes on 11 autosomes in three pairs of wild boar and domestic pig populations from China, Iberian Peninsula, and Hungary. Our results showed no statistically significant differences in allele frequency and heterozygosity across SNPs between three pairs of wild and domestic populations. This observation was more likely due to the widespread and long-lasting gene flow between wild boars and domestic pigs across Eurasia. In addition, we detected eight coding SNPs from six genes as outliers being under selection consistently by three outlier tests (BayeScan2.1, FDIST2, and Arlequin3.5). Among four non-synonymous outlier SNPs, one from TLR4 gene was identified as being subject to positive (diversifying) selection and three each from CD36, IFNW1, and IL1B genes were suggested as under balancing selection. All of these four non-synonymous variants were predicted as being benign by PolyPhen-2. Our results were supported by other independent lines of evidence for positive selection or balancing selection acting on these four immune genes (CD36, IFNW1, IL1B, and TLR4). Our study showed an example applying a candidate gene approach to identify functionally important mutations (i.e., outlier loci) in wild and domestic pigs for subsequent functional experiments.


Assuntos
Imunidade/genética , Polimorfismo de Nucleotídeo Único , Sus scrofa/genética , Suínos/genética , Animais , Antígenos CD36/genética , Frequência do Gene , Variação Genética , Genótipo , Interferons/genética , Interleucina-1beta/genética , Modelos Genéticos , Seleção Genética , Especificidade da Espécie , Receptor 4 Toll-Like/genética
6.
Malar J ; 12: 244, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23855834

RESUMO

BACKGROUND: Despite evident success of malaria control in many sites in the Arabian Peninsula, malaria remains endemic in a few spots, in Yemen and south-west of Saudi Arabia. In addition to local transmission, imported malaria sustains an extra source of parasites that can challenge the strengths of local control strategies. This study examined the genetic diversity of Plasmodium falciparum in Yemen and mutations of drug resistant genes, to elucidate parasite structure and distribution of drug resistance genotypes in the region. METHODS: Five polymorphic loci (MSP-2, Pfg377 and three microsatellites on chromosome 8) not involved in anti-malarial drug resistance, and four drug resistant genes (pfcrt, pfmdr1, dhfr and dhps) were genotyped in 108 P. falciparum isolates collected in three sites in Yemen: Dhamar, Hodeidah and Taiz. RESULTS: High diversity was seen in non-drug genes, pfg377 (He = 0.66), msp-2 (He = 0.80) and three microsatellites on chr 8, 7.7 kb (He = 0.88), 4.3 kb (He = 0.77) and 0.8 kb (He = 0.71). There was a high level of mixed-genotype infections (57%), with an average 1.8 genotypes per patient. No linkage disequilibrium was seen between drug resistant genes and the non-drug markers (p < 0.05). Genetic differentiation between populations was low (most pair-wise FST values <0.03), indicating extensive gene flow between the parasites in the three sites. CONCLUSION: The high diversity of P. falciparum in Yemen is indicative of a large parasite reservoir, which represents a challenge to control efforts. The presence of two distinct pfcrt genotype, CVIET and SVMNT, suggests that chloroquine resistance can possibly be related to a migratory path from Africa and Asia. The absence of the triple mutant dhfr genotype (IRN) and dhps mutations supports the use of artesunate + sulphadoxine-pyrimethamine as first-line therapy. However, the prevalent pfmdr1 genotype NFSND [21%] has previously been associated with tolerance/resistance response to artemisinin combination therapy (ACT). Regular surveys are, therefore, important to monitor spread of pfmdr1 and dhfr mutations and response to ACT.


Assuntos
Resistência a Medicamentos/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Antimaláricos/farmacologia , Estudos Transversais , Variação Genética , Haplótipos/genética , Humanos , Malária Falciparum/epidemiologia , Prevalência , Iêmen/epidemiologia
7.
Mol Biol Rep ; 40(6): 4123-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23640100

RESUMO

Local domestic chicken populations are of paramount importance as a source of protein in developing countries. Bangladesh possesses a large number of native chicken populations which display a broad range of phenotypes well adapted to the extreme wet and hot environments of this region. This and the fact that wild jungle fowls (JFs) are still available in some regions of the country, it urges to study the present genetic diversity and relationships between Bangladeshi autochthonous chicken populations. Here, we report the results of the mitochondrial DNA (mtDNA) sequence polymorphisms analyses to assess the genetic diversity and possible maternal origin of Bangladeshi indigenous chickens. A 648-bp fragment of mtDNA control region (D-loop) was analyzed in 96 samples from four different chicken populations and one red JF population. Sequence analysis revealed 39 variable sites that defined 25 haplotypes. Estimates of haplotype and nucleotide diversities ranged from 0.745 to 0.901 and from 0.011 to 0.016, respectively. The pairwise differences between populations ranged from 0.091 to 1.459 while most of the PhiST (ΦST) values were significant. Furthermore, AMOVA analysis revealed 89.16 % of the total genetic diversity was accounted for within population variation, indicating little genetic differentiation among the studied populations. The median network analysis from haplotypes of Bangladeshi chickens illustrated five distinct mitochondrial haplogroups (A, D, E, F and I). Individuals from all Bangladeshi chicken populations were represented in the major clades D and E; those maternal origins are presumed to be from Indian Subcontinent and Southeast Asian countries, more particularly from South China, Vietnam, Myanmar and Thailand. Further, phylogenetic analysis between indigenous chicken populations and sub-species of red JFs showed G. g. gallus and G. g. spadiceus shared with almost all haplogroups and had major influence than G. g. murghi in the origin of indigenous chicken of Bangladesh. These results suggest that Bangladeshi indigenous chickens still have abundant genetic diversity and have originated from multiple maternal lineages, and further conservation efforts are warranted to maintain the diversity.


Assuntos
Galinhas/genética , Variação Genética , Filogenia , Animais , Bangladesh , Sequência de Bases , DNA Mitocondrial/genética , Feminino , Genética Populacional , Haplótipos/genética , Dados de Sequência Molecular
8.
Anim Genet ; 44(3): 336-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22957920

RESUMO

Among all livestock species, cattle have a prominent status as they have contributed greatly to the economy, nutrition and culture from the beginning of farming societies until the present time. The origins and diversity of local cattle breeds have been widely assessed. However, there are still some regions for which very little of their local genetic resources is known. The present work aimed to estimate the genetic diversity and the origins of Omani cattle. Located in the south-eastern corner of the Arabian Peninsula, close to the Near East, East Africa and the Indian subcontinent, the Sultanate of Oman occupies a key position, which may enable understanding cattle dispersal around the Indian Ocean. To disclose the origin of this cattle population, we used a set of 11 polymorphic microsatellites and 113 samples representing the European, African and Indian ancestry to compare with cattle from Oman. This study found a very heterogenic population with a markedly Bos indicus ancestry and with some degree of admixture with Bos taurus of African and Near East origin.


Assuntos
Bovinos/genética , Variação Genética , África Oriental , Alelos , Animais , Cruzamento , Bovinos/classificação , Loci Gênicos , Oceano Índico , Repetições de Microssatélites , Oriente Médio , Omã , Filogenia , Filogeografia
9.
Nat Genet ; 35(4): 311-3, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14634648

RESUMO

Milk from domestic cows has been a valuable food source for over 8,000 years, especially in lactose-tolerant human societies that exploit dairy breeds. We studied geographic patterns of variation in genes encoding the six most important milk proteins in 70 native European cattle breeds. We found substantial geographic coincidence between high diversity in cattle milk genes, locations of the European Neolithic cattle farming sites (>5,000 years ago) and present-day lactose tolerance in Europeans. This suggests a gene-culture coevolution between cattle and humans.


Assuntos
Bovinos/genética , Evolução Molecular , Variação Genética , Lactase/genética , Proteínas do Leite/genética , Animais , Europa (Continente) , Feminino , Geografia , Humanos , Lactase/metabolismo , Intolerância à Lactose , Leite , Proteínas do Leite/metabolismo , Densidade Demográfica
10.
Food Res Int ; 163: 112259, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36596171

RESUMO

Taste plays a paramount role in food and beverage choice, with recent studies pointing to a potential influence of the microorganisms from the tongue dorsum - particularly bacteria - on flavor perception. Thus, the association between tongue dorsum biofilm and taste is a fundamental prerequisite for a better understanding of the role played by these bacteria in wine tasting. To study this impact, we have analyzed the microbiomes from 58 samples of the tongue dorsum surface from professional wine tasters and 30 samples from non professional wine tasters. The microbiome of each sample was characterized through metagenome sequencing of the 16S rRNA gene for taxonomic discrimination of bacteria. A total of 497 taxa were identified in the tongue dorsum, and significant differences in diversity were observed between the wine taster and the control group. The comparison of bacterial diversity between samples collected before and after wine tasting along with the presence of new bacterial taxa indicates a direct effect of wine on the microbiome of frequent wine tasters, particularly in those tasting sparkling wines.


Assuntos
Microbiota , Vinho , Vinho/análise , RNA Ribossômico 16S/genética , Paladar , Língua , Microbiota/genética
11.
Microbiol Spectr ; : e0242023, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37768070

RESUMO

Tuberculosis (TB) originating from expatriates that hail from high TB-burden countries is hypothesized to play a role in continued TB transmission in Oman. Here, we used whole-genome sequencing (WGS) to assess national TB transmission dynamics. The annual incidence per 100,000 population per year was calculated for nationals and expatriates. A convenience sample of Mycobacterium tuberculosis (MTB) isolates from 2018 to 2019 was sequenced and analyzed with publicly available TB sequences from Bangladesh, Tanzania, the Philippines, India, and Pakistan. Relatedness was assessed by generating core-genome single nucleotide polymorphism (SNP) distances. The incidence of TB was five cases per 100,000 persons in 2018 and seven cases per 100,000 persons in 2020 (R2 = 0.34, P = 0.60). Incidence among nationals was 3.9 per 100,000 persons in 2018 and 3.5 per 100,000 persons in 2020 (R2 = 0.20, P = 0.70), and incidence among expatriates was 7.2 per 100,000 persons in 2018 and 12.7 per 100,000 persons in 2020 (R2 = 0.74, P = 0.34). Sixty-eight local MTB isolates were sequenced and analyzed with 393 global isolates. Isolates belonged to nine distinct spoligotypes. Two isolates, originating from an expatriate and an Omani national, were grouped into a WGS-based cluster (SNP distance < 12), which was corroborated by an epidemiological investigation. Relatedness of local and global isolates (SNP distance < 100) was also seen. The relatedness between MTB strains in Oman and those in expatriate countries of origin can aid inform TB control policy. Our results provide evidence that WGS can complement epidemiological analysis to achieve the End TB strategy goal in Oman. IMPORTANCE Tuberculosis (TB) incidence in Oman remains above national program control targets. TB transmission originating from expatriates from high TB-burden countries has been hypothesized to play a role. We used whole-genome sequencing (WGS) to assess TB transmission dynamics between expatriates and Omani nationals to inform TB control efforts. Available Mycobacterium tuberculosis isolates from 2018 to 2019 underwent WGS and analysis with publicly available TB sequences from Bangladesh, the Philippines, India, and Pakistan to assess for genetic relatedness. Our analysis revealed evidence of previously unrecognized transmission between an expatriate and an Omani national, which was corroborated by epidemiological investigation. Analysis of local and global isolates revealed evidence of distant relatedness between local and global isolates. Our results provide evidence that WGS can complement classic public health surveillance to inform targeted interventions to achieve the End TB strategy goal in Oman.

12.
Animals (Basel) ; 12(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36496896

RESUMO

The variety and makeup of the gut microbiome are frequently regarded as the primary determinants of health and production performances in domestic animals. High-throughput DNA/RNA sequencing techniques (NGS) have recently gained popularity and permitted previously unheard-of advancements in the study of gut microbiota, particularly for determining the taxonomic composition of such complex communities. Here, we summarize the existing body of knowledge on livestock gut microbiome, discuss the state-of-the-art in sequencing techniques, and offer predictions for next research. We found that the enormous volumes of available data are biased toward a small number of globally distributed and carefully chosen varieties, while local breeds (or populations) are frequently overlooked despite their demonstrated resistance to harsh environmental circumstances. Furthermore, the bulk of this research has mostly focused on bacteria, whereas other microbial components such as protists, fungi, and viruses have received far less attention. The majority of these data were gathered utilizing traditional metabarcoding techniques that taxonomically identify the gut microbiota by analyzing small portions of their genome (less than 1000 base pairs). However, to extend the coverage of microbial genomes for a more precise and thorough characterization of microbial communities, a variety of increasingly practical and economical shotgun techniques are currently available.

13.
Front Genet ; 13: 847492, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711941

RESUMO

It is known that throughout history and presently, taurine (Bos taurus) and indicine/zebu (Bos indicus) cattle were crossed with other bovine species (e.g., gayal, gaur, banteng, yak, wisent, and bison). Information on the role of interspecific hybridization to facilitate faster adaptation of the newly arrived domestic species to new environments is poorly known. Herein, we collected 266 samples of bovine species of the taurine, zebu, yak, and gaur from West Europe, Southwest China, Indian subcontinent, and Southeast Asia to conduct the principal component analysis (PCA), admixture, gene flow, and selection signature analyses by using SNPs distributed across the bovine autosomes. The results showed that the genetic relationships between the zebu, yak, and gaur mirrored their geographical origins. Three ancestral components of the European taurine, East Asian taurine, and Indian zebu were found in domestic cattle, and the bidirectional genetic introgression between the Diqing cattle and Zhongdian yak was also detected. Simultaneously, the introgressed genes from the Zhongdian yak to the Diqing cattle were mainly enriched with immune-related pathways, and the ENPEP, FLT1, and PIK3CA genes related to the adaptation of high-altitude hypoxia were detected. Additionally, we found the genetic components of the Zhongdian yak had introgressed into Tibetan cattle. The 30 selected genes were detected in Tibetan cattle, which were significantly enriched in the chemokine signaling pathway. Interestingly, some genes (CDC42, SLC39A2, and EPAS1) associated with hypoxia response were discovered, in which CDC42 and SLC39A2 played important roles in angiogenesis and erythropoiesis, and heart function, respectively. This result showed that genetic introgression was one of the important ways for the environmental adaptation of domestic cattle.

14.
Pathogens ; 11(3)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35335658

RESUMO

BACKGROUND: Theileria annulata is a tick-borne protozoan parasite responsible for bovine theileriosis, a disease that impacts cattle population in many developing countries. Development and deployment of effective control strategies, based on vaccine or therapy, should consider the extent of diversity of the parasite and its population structure in different endemic areas. In this study, we examined T. annulata in Pakistan and carried out a comparative analysis with similar data garneted in other areas, to provide further information on the level of parasite diversity and parasite genetic structure in different endemic areas. METHODS: The present study examined a set of 10 microsatellites/minisatellites and analyzed the genetic structure of T. annulata in cattle breeds from Pakistan (Indian sub-continent) and compared these with those in Oman (Middle East), Tunisia (Africa), and Turkey (Europe). RESULT: A high level of genetic diversity was observed among T. annulata detected in cattle from Pakistan, comparable to that in Oman, Tunisia, and Turkey. The genotypes of T. annulata in these four countries form genetically distinct groups that are geographically sub-structured. The T. annulata population in Oman overlapped with that in the Indian Subcontinent (Pakistan) and that in Africa (Tunisia). CONCLUSIONS: The T. annulata parasite in Pakistan is highly diverse, and genetically differentiated. This pattern accords well and complements that seen among T. annulata representing the global endemic site. The parasite population in the Arabian Peninsula overlapped with that in the Indian-Subcontinent (India) and that in Africa (Tunisia), which shared some genotypes with that in the Near East and Europe (Turkey). This suggests some level of parasite gene flow, indicative of limited movement between neighboring countries.

15.
Science ; 377(6611): 1172-1180, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36074859

RESUMO

Donkeys transformed human history as essential beasts of burden for long-distance movement, especially across semi-arid and upland environments. They remain insufficiently studied despite globally expanding and providing key support to low- to middle-income communities. To elucidate their domestication history, we constructed a comprehensive genome panel of 207 modern and 31 ancient donkeys, as well as 15 wild equids. We found a strong phylogeographic structure in modern donkeys that supports a single domestication in Africa ~5000 BCE, followed by further expansions in this continent and Eurasia and ultimately returning to Africa. We uncover a previously unknown genetic lineage in the Levant ~200 BCE, which contributed increasing ancestry toward Asia. Donkey management involved inbreeding and the production of giant bloodlines at a time when mules were essential to the Roman economy and military.


Assuntos
Domesticação , Equidae , Genoma , África , Animais , Ásia , Equidae/classificação , Equidae/genética , Genômica , Humanos , Filogenia
16.
BMC Evol Biol ; 11: 24, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21266067

RESUMO

BACKGROUND: It has been established that mammalian egg zona pellucida (ZP) glycoproteins are responsible for species-restricted binding of sperm to unfertilized eggs, inducing the sperm acrosome reaction, and preventing polyspermy. In mammals, ZP apparently represents a barrier to heterospecific fertilization and thus probably contributes to reproductive isolation between species. The evolutionary relationships between some members of the tribe Bovini are complex and highly debatable, particularly, those involving Bos and Bison species for which interspecific hybridization is extensively documented. Because reproductive isolation is known to be a major precursor of species divergence, testing evolutionary patterns of ZP glycoproteins may shed some light into the speciation process of these species. To this end, we have examined intraspecific and interspecific genetic variation of two ZP genes (Zp2 and Zp3) for seven representative species (111 individuals) from the Bovini tribe, including five species from Bos and Bison, and two species each from genera Bubalus and Syncerus. RESULTS: A pattern of low levels of intraspecific polymorphism and interspecific divergence was detected for the two sequenced fragments each for Zp2 and Zp3. At intraspecific level, none of neutrality tests detected deviations from neutral equilibrium expectations for the two genes. Several haplotypes in both genes were shared by multiple species from Bos and Bison. CONCLUSIONS: Here we argue that neither ancestral polymorphism nor introgressive hybridization alone can fully account for haplotype sharing among species from Bos and Bison, and that both scenarios have contributed to such a pattern of haplotype sharing observed here. Additionally, codon-based tests revealed strong evidence for purifying selection in the Zp3 coding haplotype sequences and weak evidence for purifying selection in the Zp2 coding haplotype sequences. Contrary to a general genetic pattern that genes or genomic regions contributing to reproductive isolation between species often evolve rapidly and show little or no gene flow between species, these results demonstrate that, particularly, those sequenced exons of the Zp2 and the Zp3 did not show any contribution to reproductive isolation between the bovine species studied here.


Assuntos
Bovinos/genética , Proteínas do Ovo/genética , Evolução Molecular , Glicoproteínas de Membrana/genética , Receptores de Superfície Celular/genética , Reprodução , Sequência de Aminoácidos , Animais , Bovinos/classificação , Bovinos/fisiologia , Dados de Sequência Molecular , Filogenia , Polimorfismo Genético , Especificidade da Espécie , Glicoproteínas da Zona Pelúcida
17.
BMC Genomics ; 12: 347, 2011 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-21729323

RESUMO

BACKGROUND: Gene-targeted and genome-wide markers are crucial to advance evolutionary biology, agriculture, and biodiversity conservation by improving our understanding of genetic processes underlying adaptation and speciation. Unfortunately, for eukaryotic species with large genomes it remains costly to obtain genome sequences and to develop genome resources such as genome-wide SNPs. A method is needed to allow gene-targeted, next-generation sequencing that is flexible enough to include any gene or number of genes, unlike transcriptome sequencing. Such a method would allow sequencing of many individuals, avoiding ascertainment bias in subsequent population genetic analyses.We demonstrate the usefulness of a recent technology, exon capture, for genome-wide, gene-targeted marker discovery in species with no genome resources. We use coding gene sequences from the domestic cow genome sequence (Bos taurus) to capture (enrich for), and subsequently sequence, thousands of exons of B. taurus, B. indicus, and Bison bison (wild bison). Our capture array has probes for 16,131 exons in 2,570 genes, including 203 candidate genes with known function and of interest for their association with disease and other fitness traits. RESULTS: We successfully sequenced and mapped exon sequences from across the 29 autosomes and X chromosome in the B. taurus genome sequence. Exon capture and high-throughput sequencing identified thousands of putative SNPs spread evenly across all reference chromosomes, in all three individuals, including hundreds of SNPs in our targeted candidate genes. CONCLUSIONS: This study shows exon capture can be customized for SNP discovery in many individuals and for non-model species without genomic resources. Our captured exome subset was small enough for affordable next-generation sequencing, and successfully captured exons from a divergent wild species using the domestic cow genome as reference.


Assuntos
Éxons , Análise de Sequência de DNA/métodos , Animais , Bovinos , Feminino , Genoma , Genótipo , Polimorfismo de Nucleotídeo Único , Software , Cromossomo X
18.
Mol Biol Evol ; 27(1): 1-6, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19770222

RESUMO

Animal domestication was a major step forward in human prehistory, contributing to the emergence of more complex societies. At the time of the Neolithic transition, zebu cattle (Bos indicus) were probably the most abundant and important domestic livestock species in Southern Asia. Although archaeological evidence points toward the domestication of zebu cattle within the Indian subcontinent, the exact geographic origins and phylogenetic history of zebu cattle remains uncertain. Here, we report evidence from 844 zebu mitochondrial DNA (mtDNA) sequences surveyed from 19 Asiatic countries comprising 8 regional groups, which identify 2 distinct mitochondrial haplogroups, termed I1 and I2. The marked increase in nucleotide diversity (P < 0.001) for both the I1 and I2 haplogroups within the northern part of the Indian subcontinent is consistent with an origin for all domestic zebu in this area. For haplogroup I1, genetic diversity was highest within the Indus Valley among the three hypothesized domestication centers (Indus Valley, Ganges, and South India). These data support the Indus Valley as the most likely center of origin for the I1 haplogroup and a primary center of zebu domestication. However, for the I2 haplogroup, a complex pattern of diversity is detected, preventing the unambiguous pinpointing of the exact place of origin for this zebu maternal lineage. Our findings are discussed with respect to the archaeological record for zebu domestication within the Indian subcontinent.


Assuntos
Bovinos/genética , Evolução Molecular , Criação de Animais Domésticos/história , Animais , Arqueologia , Ásia , DNA Mitocondrial/genética , Geografia , Haplótipos , História Antiga , Índia , Dados de Sequência Molecular , Análise de Sequência de DNA
19.
Proc Biol Sci ; 278(1702): 50-7, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20667880

RESUMO

Genetic data from extant donkeys (Equus asinus) have revealed two distinct mitochondrial DNA haplogroups, suggestive of two separate domestication events in northeast Africa about 5000 years ago. Without distinct phylogeographic structure in domestic donkey haplogroups and with little information on the genetic makeup of the ancestral African wild ass, however, it has been difficult to identify wild ancestors and geographical origins for the domestic mitochondrial clades. Our analysis of ancient archaeological and historic museum samples provides the first genetic information on the historic Nubian wild ass (Equus africanus africanus), Somali wild ass (Equus africanus somaliensis) and ancient donkey. The results demonstrate that the Nubian wild ass was an ancestor of the first donkey haplogroup. In contrast, the Somali wild ass has considerable mitochondrial divergence from the Nubian wild ass and domestic donkeys. These findings resolve the long-standing issue of the role of the Nubian wild ass in the domestication of the donkey, but raise new questions regarding the second ancestor for the donkey. Our results illustrate the complexity of animal domestication, and have conservation implications for critically endangered Nubian and Somali wild ass.


Assuntos
Animais Domésticos/genética , Evolução Biológica , Equidae/genética , Filogenia , África do Norte , Animais , Sequência de Bases , Pesos e Medidas Corporais , Osso e Ossos/química , Análise por Conglomerados , DNA Mitocondrial/genética , Demografia , Espécies em Perigo de Extinção , Fezes/química , Geografia , Haplótipos/genética , Dados de Sequência Molecular , Análise de Sequência de DNA , Pele/química , Especificidade da Espécie
20.
Trop Anim Health Prod ; 43(7): 1237-43, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21519969

RESUMO

The sheep is one of the most successful and widely spread domestic animals. Archaeological evidence traces the first domestic sheep back to the Near East region around 9,000 years ago. It is also known that soon after, the domesticated sheep started to flow out of the centre of origin and spread all over the ancient world following the expansion of agriculture. Throughout time, herders, nature elements and eventually some hybridization with different wild relatives produced a multitude of breeds. However, until the advent of the molecular genetics field, very little was known about the origins of most of those breeds. Two decades after the first genetic studies, we have gathered considerable information on the origins, phylogenetic relationships and patterns of genetic diversity of the sheep across the world. Indeed, the genetic studies confirmed the Near East region as the main centre of origin and also revealed other contributions from other regions. Specifically about the fat-tailed sheep, molecular genetics was also able to link their maternal origin to a specific group. So far, modern sheep have originated from five different maternal origins. Nonetheless, the technological advances of the DNA sequencing techniques are bringing more data that is showing the complexity of the domestication process.


Assuntos
Evolução Biológica , Variação Genética , Filogenia , Carneiro Doméstico/genética , Animais , DNA Mitocondrial/genética , Repetições de Microssatélites/genética , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA