Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 293(39): 15070-15083, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30111591

RESUMO

Gene targeting via homologous recombination can occasionally result in incomplete disruption of the targeted gene. Here, we show that a widely used Nur77-deficient transgenic mouse model expresses a truncated protein encoding for part of the N-terminal domain of nuclear receptor Nur77. This truncated Nur77 protein is absent in a newly developed Nur77-deficient mouse strain generated using Cre-Lox recombination. Comparison of these two mouse strains using immunohistochemistry, flow cytometry, and colony-forming assays shows that homologous recombination-derived Nur77-deficient mice, but not WT or Cre-Lox-derived Nur77-deficient mice, suffer from liver immune cell infiltrates, loss of splenic architecture, and increased numbers of bone marrow hematopoietic stem cells and splenic colony-forming cells with age. Mechanistically, we demonstrate that the truncated Nur77 N-terminal domain protein maintains the stability and activity of hypoxia-inducible factor (HIF)-1, a transcription factor known to regulate bone marrow homeostasis. Additionally, a previously discovered, but uncharacterized, human Nur77 transcript variant that encodes solely for its N-terminal domain, designated TR3ß, can also stabilize and activate HIF-1α. Meta-analysis of publicly available microarray data sets shows that TR3ß is highly expressed in human bone marrow cells and acute myeloid leukemia samples. In conclusion, our study provides evidence that a transgenic mouse model commonly used to study the biological function of Nur77 has several major drawbacks, while simultaneously identifying the importance of nongenomic Nur77 activity in the regulation of bone marrow homeostasis.


Assuntos
Células da Medula Óssea/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Domínios Proteicos/genética , Animais , Medula Óssea/metabolismo , Medula Óssea/patologia , Citometria de Fluxo , Regulação da Expressão Gênica/genética , Homeostase/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Camundongos , Camundongos Transgênicos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/química
2.
Nat Rev Bioeng ; 1(4): 286-303, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064653

RESUMO

Cytokines have pivotal roles in immunity, making them attractive as therapeutics for a variety of immune-related disorders. However, the widespread clinical use of cytokines has been limited by their short blood half-lives and severe side effects caused by low specificity and unfavourable biodistribution. Innovations in bioengineering have aided in advancing our knowledge of cytokine biology and yielded new technologies for cytokine engineering. In this Review, we discuss how the development of bioanalytical methods, such as sequencing and high-resolution imaging combined with genetic techniques, have facilitated a better understanding of cytokine biology. We then present an overview of therapeutics arising from cytokine re-engineering, targeting and delivery, mRNA therapeutics and cell therapy. We also highlight the application of these strategies to adjust the immunological imbalance in different immune-mediated disorders, including cancer, infection and autoimmune diseases. Finally, we look ahead to the hurdles that must be overcome before cytokine therapeutics can live up to their full potential.

3.
Nat Biomed Eng ; 7(9): 1097-1112, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37291433

RESUMO

Immunoparalysis is a compensatory and persistent anti-inflammatory response to trauma, sepsis or another serious insult, which increases the risk of opportunistic infections, morbidity and mortality. Here, we show that in cultured primary human monocytes, interleukin-4 (IL4) inhibits acute inflammation, while simultaneously inducing a long-lasting innate immune memory named trained immunity. To take advantage of this paradoxical IL4 feature in vivo, we developed a fusion protein of apolipoprotein A1 (apoA1) and IL4, which integrates into a lipid nanoparticle. In mice and non-human primates, an intravenously injected apoA1-IL4-embedding nanoparticle targets myeloid-cell-rich haematopoietic organs, in particular, the spleen and bone marrow. We subsequently demonstrate that IL4 nanotherapy resolved immunoparalysis in mice with lipopolysaccharide-induced hyperinflammation, as well as in ex vivo human sepsis models and in experimental endotoxemia. Our findings support the translational development of nanoparticle formulations of apoA1-IL4 for the treatment of patients with sepsis at risk of immunoparalysis-induced complications.


Assuntos
Interleucina-4 , Sepse , Humanos , Animais , Camundongos , Interleucina-4/metabolismo , Imunidade Treinada , Monócitos
4.
Atherosclerosis ; 339: 35-45, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34847419

RESUMO

BACKGROUND AND AIMS: The endothelium plays a major role in atherosclerosis, yet the endothelial plaque surface is a largely uncharted territory. Here we hypothesize that atherosclerosis-driven remodeling of the endothelium is a dynamic process, involving both damaging and regenerative mechanisms. METHODS: Using scanning electron microscopy (SEM) and immuno-SEM, we studied endothelial junction ultrastructure, endothelial openings and immune cell-endothelium interactions in eight apoe-/- mice and two human carotid plaques. RESULTS: The surface of early mouse plaques (n = 11) displayed a broad range of morphological alterations, including junctional disruptions and large transcellular endothelial pores with the average diameter between 0.6 and 3 µm. The shoulder region of advanced atherosclerotic lesions (n = 7) had a more aggravated morphology with 8 µm-size paracellular openings at two-fold higher density. In contrast, the central apical surface of advanced plaques, i.e., the plaque body (n = 7), displayed endothelial normalization, as shown by a significantly higher frequency of intact endothelial junctions and a lower incidence of paracellular pores. This normalized endothelial phenotype correlated with low immune cell density (only 5 cells/mm2). The human carotid plaque surface (n = 2) displayed both well-organized and disrupted endothelium with similar features as described above. In addition, they were accompanied by extensive thrombotic areas. CONCLUSIONS: Our study unveils the spectrum of endothelial abnormalities associated with the development of atherosclerosis. These were highly abundant in early lesions and in the shoulder region of advanced plaques, while normalized at the advanced plaque's body. Similar endothelial features were observed in human atherosclerotic plaques, underlining the versatility of endothelial transformations in atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Artérias Carótidas , Endotélio , Camundongos , Microscopia Eletrônica de Varredura
5.
Sci Transl Med ; 13(584)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692130

RESUMO

Macrophages play a central role in the pathogenesis of atherosclerosis. The inflammatory properties of these cells are dictated by their metabolism, of which the mechanistic target of rapamycin (mTOR) signaling pathway is a key regulator. Using myeloid cell-specific nanobiologics in apolipoprotein E-deficient (Apoe -/-) mice, we found that targeting the mTOR and ribosomal protein S6 kinase-1 (S6K1) signaling pathways rapidly diminished plaque macrophages' inflammatory activity. By investigating transcriptome modifications, we identified Psap, a gene encoding the lysosomal protein prosaposin, as closely related with mTOR signaling. Subsequent in vitro experiments revealed that Psap inhibition suppressed both glycolysis and oxidative phosphorylation. Transplantation of Psap -/- bone marrow to low-density lipoprotein receptor knockout (Ldlr -/-) mice led to a reduction in atherosclerosis development and plaque inflammation. Last, we confirmed the relationship between PSAP expression and inflammation in human carotid atherosclerotic plaques. Our findings provide mechanistic insights into the development of atherosclerosis and identify prosaposin as a potential therapeutic target.


Assuntos
Aterosclerose , Placa Aterosclerótica , Saposinas/uso terapêutico , Animais , Modelos Animais de Doenças , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE
6.
ACS Nano ; 13(12): 13759-13774, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31268670

RESUMO

Atherosclerosis is associated with a compromised endothelial barrier, facilitating the accumulation of immune cells and macromolecules in atherosclerotic lesions. In this study, we investigate endothelial barrier integrity and the enhanced permeability and retention (EPR) effect during atherosclerosis progression and therapy in Apoe-/- mice using hyaluronan nanoparticles (HA-NPs). Utilizing ultrastructural and en face plaque imaging, we uncover a significantly decreased junction continuity in the atherosclerotic plaque-covering endothelium compared to the normal vessel wall, indicative of disrupted endothelial barrier. Intriguingly, the plaque advancement had a positive effect on junction stabilization, which correlated with a 3-fold lower accumulation of in vivo administrated HA-NPs in advanced plaques compared to early counterparts. Furthermore, by using super-resolution and correlative light and electron microscopy, we trace nanoparticles in the plaque microenvironment. We find nanoparticle-enriched endothelial junctions, containing 75% of detected HA-NPs, and a high HA-NP accumulation in the endothelium-underlying extracellular matrix, which suggest an endothelial junctional traffic of HA-NPs to the plague. Finally, we probe the EPR effect by HA-NPs in the context of metabolic therapy with a glycolysis inhibitor, 3PO, proposed as a vascular normalizing strategy. The observed trend of attenuated HA-NP uptake in aortas of 3PO-treated mice coincides with the endothelial silencing activity of 3PO, demonstrated in vitro. Interestingly, the therapy also reduced the plaque inflammatory burden, while activating macrophage metabolism. Our findings shed light on natural limitations of nanoparticle accumulation in atherosclerotic plaques and provide mechanistic insight into nanoparticle trafficking across the atherosclerotic endothelium. Furthermore, our data contribute to the rising field of endothelial barrier modulation in atherosclerosis.


Assuntos
Artérias/patologia , Aterosclerose/metabolismo , Aterosclerose/terapia , Progressão da Doença , Endotélio Vascular/patologia , Nanopartículas/química , Animais , Aterosclerose/patologia , Entropia , Európio/química , Camundongos , Probabilidade , Temperatura
7.
ACS Nano ; 11(6): 5785-5799, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28463501

RESUMO

Hyaluronan is a biologically active polymer, which can be formulated into nanoparticles. In our study, we aimed to probe atherosclerosis-associated inflammation by using hyaluronan nanoparticles and to determine whether they can ameliorate atherosclerosis. Hyaluronan nanoparticles (HA-NPs) were prepared by reacting amine-functionalized oligomeric hyaluronan (HA) with cholanic ester and labeled with a fluorescent or radioactive label. HA-NPs were characterized in vitro by several advanced microscopy methods. The targeting properties and biodistribution of HA-NPs were studied in apoe-/- mice, which received either fluorescent or radiolabeled HA-NPs and were examined ex vivo by flow cytometry or nuclear techniques. Furthermore, three atherosclerotic rabbits received 89Zr-HA-NPs and were imaged by PET/MRI. The therapeutic effects of HA-NPs were studied in apoe-/- mice, which received weekly doses of 50 mg/kg HA-NPs during a 12-week high-fat diet feeding period. Hydrated HA-NPs were ca. 90 nm in diameter and displayed very stable morphology under hydrolysis conditions. Flow cytometry revealed a 6- to 40-fold higher uptake of Cy7-HA-NPs by aortic macrophages compared to normal tissue macrophages. Interestingly, both local and systemic HA-NP-immune cell interactions significantly decreased over the disease progression. 89Zr-HA-NPs-induced radioactivity in atherosclerotic aortas was 30% higher than in wild-type controls. PET imaging of rabbits revealed 6-fold higher standardized uptake values compared to the muscle. The plaques of HA-NP-treated mice contained 30% fewer macrophages compared to control and free HA-treated group. In conclusion, we show favorable targeting properties of HA-NPs, which can be exploited for PET imaging of atherosclerosis-associated inflammation. Furthermore, we demonstrate the anti-inflammatory effects of HA-NPs in atherosclerosis.


Assuntos
Anti-Inflamatórios/uso terapêutico , Aterosclerose/tratamento farmacológico , Ácido Hialurônico/uso terapêutico , Macrófagos/efeitos dos fármacos , Nanopartículas/uso terapêutico , Placa Aterosclerótica/tratamento farmacológico , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacocinética , Aterosclerose/diagnóstico por imagem , Aterosclerose/patologia , Ácido Hialurônico/química , Ácido Hialurônico/farmacocinética , Macrófagos/patologia , Masculino , Camundongos , Nanopartículas/química , Nanopartículas/ultraestrutura , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/patologia , Tomografia por Emissão de Pósitrons , Coelhos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA