Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Cell Biol ; 99(1): 54-60, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32538128

RESUMO

Milk contains bioactive molecules with important functions as defensive proteins; among them are the whey protein lactoferrin and proteins of the milk fat globule membrane (MFGM) present in buttermilk. The aim of this study has been to investigate the effects of lactoferrin, whey, and buttermilk as modulators of intestinal innate immunity and oxidative stress on intestinal epithelial cells, to evaluate its potential use for the development of functional foods. The mRNA expression levels of innate immune system Toll-like receptors (TLR2, TLR4, and TLR9), lipid peroxidation (malondialdehyde + 4-hydroxyalkenals) and protein expression levels of carbonyl were analyzed in enterocyte-like Caco-2/TC7 cells treated for 24 h with different concentrations of lactoferrin, whey, or buttermilk. None of the substances analyzed caused oxidative damage; however, whey significantly decreased the levels of lipid peroxidation. Furthermore, both lactoferrin and whey reduced the oxidative stress induced by lipopolysaccharide. With respect to TLR receptors, lactoferrin, whey, and buttermilk specifically altered the expression of TLR2, TLR4, and TLR9 receptors, with a strong decrease in the expression levels of TLR4. These results suggest that lactoferrin, whey, and buttermilk are potentially interesting ingredients for functional foods because they seem to modulate oxidative stress and the inflammatory response induced by the activation of TLRs.


Assuntos
Leitelho , Mucosa Intestinal/imunologia , Lactoferrina/imunologia , Receptores Toll-Like/imunologia , Soro do Leite/imunologia , Animais , Bovinos , Células Cultivadas , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Mucosa Intestinal/efeitos dos fármacos , Lactoferrina/química , Peroxidação de Lipídeos/imunologia , Lipopolissacarídeos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/imunologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Receptores Toll-Like/genética , Soro do Leite/química
2.
Mol Nutr Food Res ; 67(20): e2300248, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37654048

RESUMO

SCOPE: Diet is one of the main factors that modifies intestinal microbiota composition. The search for foods that can reverse situations of intestinal dysbiosis such as that induced by antibiotics is of great interest. Buttermilk and whey are the main by-products produced by the dairy industry containing bioactive compounds. The aim of this study is to investigate the ability of whey and buttermilk-based formulas supplemented with lactoferrin and milk fat globule membrane (MFGM) to modulate the effects of clindamycin on mouse intestinal microbiota. METHODS AND RESULTS: Male C57BL/6 mice are treated with saline (control), clindamycin (Clin), a formula containing whey (F1) or buttermilk (F2), Clin+F1 or Clin+F2, and their fecal microbiota profiles are analyzed by sequencing of 16S rRNA gene using the MinION device. Clin induces alterations in both the composition and metabolic functions of the mice intestinal microbiota. The treatment with F1 or F2 reverses the effects of clindamycin, restoring the levels of Rikenellaceae and Lactobacillaceae families and certain pathways related to short-chain fatty acids production and tetrahydrofolate biosynthesis. CONCLUSION: Whey and buttermilk supplemented with lactoferrin and MFGM may be a bioactive formula for functional foods to prevent or restore microbiota alterations induced by antibiotic administration.


Assuntos
Leitelho , Microbioma Gastrointestinal , Humanos , Masculino , Animais , Camundongos , Soro do Leite , Antibacterianos/efeitos adversos , Clindamicina/efeitos adversos , Disbiose/induzido quimicamente , RNA Ribossômico 16S/genética , Lactoferrina/farmacologia , Camundongos Endogâmicos C57BL , Proteínas do Soro do Leite/farmacologia
3.
Pharmaceutics ; 15(6)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37376017

RESUMO

The intestine represents one of the first barriers where microorganisms and environmental antigens come into tight contact with the host immune system. A healthy intestine is essential for the well-being of humans and animals. The period after birth is a very important phase of development, as the infant moves from a protected environment in the uterus to one with many of unknown antigens and pathogens. In that period, mother's milk plays an important role, as it contains an abundance of biologically active components. Among these components, the iron-binding glycoprotein, lactoferrin (LF), has demonstrated a variety of important benefits in infants and adults, including the promotion of intestinal health. This review article aims to provide a compilation of all the information related to LF and intestinal health, in infants and adults.

4.
Food Funct ; 13(10): 5854-5869, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35545893

RESUMO

Background: Antibiotic administration can result in gut microbiota and immune system alterations that impact health. Bovine lactoferrin is a milk protein with anticancer, anti-inflammatory, antimicrobial and immune modulatory activities. The aim was to study the ability of native and iron-saturated lactoferrin to reverse the effects of clindamycin on gut microbiota and intestinal Toll-like receptor (TLR) expression in a murine model. Methods: Male C57BL/6 mice were treated with vehicle, clindamycin (Clin), native bovine lactoferrin (nLf), nLf + clindamycin (nLf_Clin), iron-saturated bovine lactoferrin (sLf) and sLf + clindamycin (sLf_Clin). Fecal samples of each group were collected, and bacterial DNA was extracted. Sequencing of 16s rRNA V4 hypervariable gene regions was conducted to assess the microbial composition. mRNA expression levels of TLRs (1-9) were determined in mouse colon by qPCR. Pearson's correlation test was carried out between bacteria showing differences in abundance among samples and TLR2, TLR8 and TLR9. Results: Beta-diversity analysis showed that the microbial community of the vehicle was different from the communities of Clin, nLf_Clin and sLf_Clin. At the family level, Bacteroidaceae, Prevotellaceae and Rikenellaceae decreased in the Clin group, and treatment with nLf or sLf reverted these effects. Clin reduced the expression of TLR2, TLR8 and TLR9 and sLf reverted the decrease in the expression of these receptors. Finally, TLR8 was positively correlated with Rikenellaceae abundance. Conclusion: In a situation of intestinal dysbiosis induced by clindamycin, lactoferrin restores the normal levels of some anti-inflammatory bacteria and TLRs and, therefore, could be a good ingredient to be added to functional foods.


Assuntos
Disbiose , Microbioma Gastrointestinal , Animais , Antibacterianos , Bactérias , Clindamicina , Disbiose/induzido quimicamente , Disbiose/tratamento farmacológico , Disbiose/microbiologia , Ferro/metabolismo , Lactoferrina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética , Receptor 2 Toll-Like/metabolismo , Receptor 8 Toll-Like/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
5.
Metallomics ; 13(7)2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34114030

RESUMO

New cyclometalated gold(III) complexes with a general structure [Au(C^N)(SR)2] or [Au(C^N)Cl(SR)], where C^N is a biphenyl ligand such as 2-(p-tolyl)pyridinate (tpy), 2-phenylpyridinate (ppy) and 2-benzylpyridinate (bzp) (SR = Spym, S(Me)2pym, 2-thiouracil (2-TU) and thiourea), and also with ethynyl moieties of the type [Au(C^N)(C≡C-Ar)2] (Ar = p-toluene and 2-pyridine) have been synthesized. All of them have been characterized, including X-ray studies of complex [Au(bzp)Cl(Spym)], and these studies have permitted to elucidate that leaving chloride ligand is trans located to CAr atom. After the full characterization, physicochemical properties were measured by evaluating drug-like water solubility and cell permeability (partition coefficient). All these experiments pointed that our complexes present adequate properties to be used as anticancer drugs. Although not all the complexes showed antiproliferative effects on Caco-2 cells, those that did were more cytotoxic than cisplatin; and complex [Au(tpy)Cl(2-TU)] is even more active than auranofin. In addition to this effectiveness, no evidence of cytotoxic effects was observed on considered normal cells (with the exception of [Au(bzp)Cl(2-TU)]. Further action mechanisms studies were performed using these selective complexes, showing cell cycle arrest on the G2/M phase, a proapoptotic behaviour and also the modification of some genes involved in tumorigenesis. Thus, as a result of this investigation, we present a new family of 17 cyclometalated complexes, 6 of them being selective and possible candidates to be used against colon cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Complexos de Coordenação/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular , Ouro/química , Pontos de Checagem da Fase M do Ciclo Celular , Antineoplásicos/química , Células CACO-2 , Proliferação de Células , Neoplasias do Colo/patologia , Complexos de Coordenação/química , Humanos , Modelos Moleculares
6.
Animals (Basel) ; 11(7)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34359264

RESUMO

The study assessed changes in the gut microbiota of pigs after dietary supplementation with protected sodium butyrate (PSB) during the growing-fattening period (≈90 days). One gram of colon content from 18 pigs (9 from the treatment group -TG- and 9 from the control group -CG-) was collected. Bacterial DNA was extracted and 16S rRNA high-throughput amplicon sequencing used to assess microbiota changes between groups. The groups shared 75.4% of the 4697 operational taxonomic units identified. No differences in alpha diversity were found, but significant differences for some specific taxa were detected between groups. The low-represented phylum Deinococcus-Thermus, which is associated with the production of carotenoids with antioxidant, anti-apoptotic, and anti-inflammatory properties, was increased in the TG (p = 0.032). Prevotellaceae, Lachnospiraceae, Peptostreptococcaceae, Peptococcaceae, and Terrisporobacter were increased in the TG. Members of these families have the ability to ferment complex dietary polysaccharides and produce larger amounts of short chain fatty acids. Regarding species, only Clostridium butyricum was increased in the TG (p = 0.048). Clostridium butyricum is well-known as probiotic in humans, but it has also been associated with overall positive gut effects (increased villus height, improved body weight, reduction of diarrhea, etc.) in weanling pigs. Although the use of PSB did not modify the overall richness of microbiota composition of these slaughter pigs, it may have increased specific taxa associated with better gut health parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA