Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Chem Res Toxicol ; 37(4): 633-642, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38498000

RESUMO

Aflatoxin B1 (AFB1) is a potent human liver carcinogen produced by certain molds, particularly Aspergillus flavus and Aspergillus parasiticus, which contaminate peanuts, corn, rice, cottonseed, and ground and tree nuts, principally in warm and humid climates. AFB1 undergoes bioactivation in the liver to produce AFB1-exo-8,9-epoxide, which forms the covalently bound cationic AFB1-N7-guanine (AFB1-N7-Gua) DNA adduct. This adduct is unstable and undergoes base-catalyzed opening of the guanine imidazolium ring to form two ring-opened diastereomeric 8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxy-aflatoxin B1 (AFB1-FapyGua) adducts. The AFB1 formamidopyrimidine (Fapy) adducts induce G → T transversion mutations and are likely responsible for the carcinogenic effects of AFB1. Quantitative liquid chromatography-mass spectrometry (LC-MS) methods have shown that AFB1-N7-Gua is eliminated in rodent and human urine, whereas ring-opened AFB1-FapyGua adducts persist in rodent liver. However, fresh frozen biopsy tissues are seldom available for biomonitoring AFB1 DNA adducts in humans, impeding research advances in this potent liver carcinogen. In contrast, formalin-fixed paraffin-embedded (FFPE) specimens used for histopathological analysis are often accessible for molecular studies. However, ensuring nucleic acid quality presents a challenge due to incomplete reversal of formalin-mediated DNA cross-links, which can preclude accurate quantitative measurements of DNA adducts. In this study, employing ion trap or high-resolution accurate Orbitrap mass spectrometry, we demonstrate that ring-opened AFB1-FapyGua adducts formed in AFB1-exposed newborn mice are stable to the formalin fixation and DNA de-cross-linking retrieval processes. The AFB1-FapyGua adducts can be detected at levels comparable to those in a match of fresh frozen liver. Orbitrap MS2 measurements can detect AFB1-FapyGua at a quantification limit of 4.0 adducts per 108 bases when only 0.8 µg of DNA is assayed on the column. Thus, our breakthrough DNA retrieval technology can be adapted to screen for AFB1 DNA adducts in FFPE human liver specimens from cohorts at risk of this potent liver carcinogen.


Assuntos
Aflatoxina B1 , Adutos de DNA , Camundongos , Humanos , Animais , Aflatoxina B1/química , Inclusão em Parafina , DNA/metabolismo , Carcinógenos/metabolismo , Espectrometria de Massas , Guanina , Formaldeído
2.
Chem Res Toxicol ; 36(8): 1419-1426, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37462928

RESUMO

Smoking is a risk factor for bladder cancer (BC), although the specific chemicals responsible for BC remain uncertain. Considerable research has focused on aromatic amines (AAs), including o-toluidine (o-tol), o-anisidine (o-anis), 2-naphthylamine (2-NA), and 4-aminobiphenyl (4-ABP), which are linked to human BC based on elevated BC incidence in occupationally exposed factory workers. These AAs arise at nanogram levels per combusted cigarette. The unambiguous identification of AAs, particularly low-molecular-weight monocyclic AAs in tobacco smoke extracts, by liquid chromatography-mass spectrometry (LC-MS) is challenging due to their poor performance on reversed-phase columns and co-elution with isobaric interferences from the complex tobacco smoke matrix. We employed a tandem liquid-liquid and solid-phase extraction method to isolate AAs from the basic fraction of tobacco smoke condensate (TSC) and utilized high-field asymmetric waveform ion mobility spectrometry (FAIMS) coupled to high-resolution accurate mass (HRAM) Orbitrap LC-MS2 to assay AAs in TSC. The employment of FAIMS greatly reduced sample complexity by removing precursor co-isolation interfering species at the MS1 scan stage, resulting in dramatically improved signal-to-noise of the precursor ions and cleaner, high-quality MS2 spectra for unambiguous identification and quantification of AAs in TSC. We demonstrate the power of LC/FAIMS/MS2 by characterizing and quantifying two low-molecular-weight carcinogenic AAs, o-tol and o-anis, in TSC, using stable isotopically labeled internal standards. These results demonstrate the power of FAIMS in trace-level analyses of AA carcinogens in the complex tobacco smoke matrix.


Assuntos
Poluição por Fumaça de Tabaco , Neoplasias da Bexiga Urinária , Humanos , Poluição por Fumaça de Tabaco/análise , Espectrometria de Mobilidade Iônica , Espectrometria de Massas em Tandem/métodos , Carcinógenos/química , Aminas/química
3.
Chem Res Toxicol ; 36(8): 1361-1373, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37421305

RESUMO

Animal fat and iron-rich diets are risk factors for Parkinson's disease (PD). The heterocyclic aromatic amines (HAAs) harman and norharman are neurotoxicants formed in many foods and beverages, including cooked meats, suggesting a role for red meat in PD. The structurally related carcinogenic HAAs 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylmidazo[4,5-f]quinoxaline (MeIQx), and 2-amino-9H-pyrido[2,3-b]indole (AαC) also form in cooked meats. We investigated the cytotoxicity, DNA-damaging potential, and mitochondrial damage of HAAs and their genotoxic HONH-HAA metabolites in galactose-dependent SH-SY5Y cells, a human neuroblastoma cell line relevant for PD-related neurotoxicity. All HAAs and HONH-HAAs induced weak toxicity except HONH-PhIP, which was 1000-fold more potent than the other chemicals. HONH-PhIP DNA adduct formation occurred at 300-fold higher levels than adducts formed with HONH-MeIQx and HONH-AαC, assuming similar cellular uptake rates. PhIP-DNA adduct levels occurred at concentrations as low as 1 nM and were threefold or higher and more persistent in mitochondrial DNA than nuclear DNA. N-Acetyltransferases (NATs), sulfotransferases, and kinases catalyzed PhIP-DNA binding and converted HONH-PhIP to highly reactive ester intermediates. DNA binding assays with cytosolic, mitochondrial, and nuclear fractions of SH-SY5Y fortified with cofactors revealed that cytosolic AcCoA-dependent enzymes, including NAT1, mainly carried out HONH-PhIP bioactivation to form N-acetoxy-PhIP, which binds to DNA. Furthermore, HONH-PHIP and N-acetoxy-PhIP inhibited mitochondrial complex-I, -II, and -III activities in isolated SH-SY5Y mitochondria. Mitochondrial respiratory chain complex dysfunction and DNA damage are major mechanisms in PD pathogenesis. Our data support the possible role of PhIP in PD etiology.


Assuntos
Carcinógenos , Neuroblastoma , Animais , Humanos , Carcinógenos/metabolismo , Piridinas , Dano ao DNA , Aminas/metabolismo , Carne/análise
4.
Chem Res Toxicol ; 35(10): 1863-1880, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-35877975

RESUMO

Smoking is a major risk factor for bladder cancer (BC), with up to 50% of BC cases being attributed to smoking. There are 70 known carcinogens in tobacco smoke; however, the principal chemicals responsible for BC remain uncertain. The aromatic amines 4-aminobiphenyl (4-ABP) and 2-naphthylamine (2-NA) are implicated in BC pathogenesis of smokers on the basis of the elevated BC risk in factory workers exposed to these chemicals. However, 4-ABP and 2-NA only occur at several nanograms per cigarette and may be insufficient to induce BC. In contrast, other genotoxicants, including acrolein, occur at 1000-fold or higher levels in tobacco smoke. There is limited data on the toxicological effects of tobacco smoke in human bladder cells. We have assessed the cytotoxicity, oxidative stress, and DNA damage of tobacco smoke condensate (TSC) in human RT4 bladder cells. TSC was fractionated by liquid-liquid extraction into an acid-neutral fraction (NF), containing polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs, phenols, and aldehydes, and a basic fraction (BF) containing aromatic amines, heterocyclic aromatic amines, and N-nitroso compounds. The TSC and NF induced a time- and concentration-dependent cytotoxicity associated with oxidative stress, lipid peroxide formation, glutathione (GSH) depletion, and apurinic/apyrimidinic (AP) site formation, while the BF showed weak effects. LC/MS-based metabolomic approaches showed that TSC and NF altered GSH biosynthesis pathways and induced more than 40 GSH conjugates. GSH conjugates of several hydroquinones were among the most abundant conjugates. RT4 cell treatment with synthetic hydroquinones and cresol mixtures at levels present in tobacco smoke accounted for most of the TSC-induced cytotoxicity and the AP sites formed. GSH conjugates of acrolein, methyl vinyl ketone, and crotonaldehyde levels also increased owing to TSC-induced oxidative stress. Thus, TSC is a potent toxicant and DNA-damaging agent, inducing deleterious effects in human bladder cells at concentrations of <1% of a cigarette in cell culture media.


Assuntos
Poluição por Fumaça de Tabaco , Neoplasias da Bexiga Urinária , Humanos , 2-Naftilamina/metabolismo , 2-Naftilamina/farmacologia , Acroleína/metabolismo , Aldeídos/metabolismo , Carcinógenos/química , Cresóis/metabolismo , Cresóis/farmacologia , DNA/metabolismo , Dano ao DNA , Células Epiteliais , Glutationa/metabolismo , Hidroquinonas/metabolismo , Peróxidos Lipídicos/metabolismo , Compostos Nitrosos/metabolismo , Estresse Oxidativo , Fumaça/efeitos adversos , Fumaça/análise , Nicotiana/química , Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/metabolismo
5.
Mass Spectrom Rev ; 39(1-2): 55-82, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-29889312

RESUMO

Hazardous chemicals in the environment and diet or their electrophilic metabolites can form adducts with genomic DNA, which can lead to mutations and the initiation of cancer. In addition, reactive intermediates can be generated in the body through oxidative stress and damage the genome. The identification and measurement of DNA adducts are required for understanding exposure and the causal role of a genotoxic chemical in cancer risk. Over the past three decades, 32 P-postlabeling, immunoassays, gas chromatography/mass spectrometry, and liquid chromatography/mass spectrometry (LC/MS) methods have been established to assess exposures to chemicals through measurements of DNA adducts. It is now possible to measure some DNA adducts in human biopsy samples, by LC/MS, with as little as several milligrams of tissue. In this review article, we highlight the formation and biological effects of DNA adducts, and highlight our advances in human biomonitoring by mass spectrometric analysis of formalin-fixed paraffin-embedded tissues, untapped biospecimens for carcinogen DNA adduct biomarker research.


Assuntos
Adutos de DNA/análise , Espectrometria de Massas/métodos , Animais , Biópsia , Cromatografia Líquida/métodos , Adutos de DNA/genética , Humanos , Mutação , Neoplasias/genética
6.
Arch Toxicol ; 95(6): 2189-2199, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33938965

RESUMO

Aristolochic acid (AA-I) induces upper urothelial tract cancer (UUTC) and bladder cancer (BC) in humans. AA-I forms the 7-(2'-deoxyadenosin-N6-yl)aristolactam I (dA-AL-I) adduct, which induces multiple A:T-to-T:A transversion mutations in TP53 of AA-I exposed UTUC patients. This mutation is rarely reported in TP53 of other transitional cell carcinomas and thus recognized as an AA-I mutational signature. A:T-to-T:A transversion mutations were recently detected in bladder tumors of patients in Asia with known AA-I-exposure, implying that AA-I contributes to BC. Mechanistic studies on AA-I genotoxicity have not been reported in human bladder. In this study, we examined AA-I DNA adduct formation and mechanisms of toxicity in the human RT4 bladder cell line. The biological potencies of AA-I were compared to 4-aminobiphenyl, a recognized human bladder carcinogen, and several structurally related carcinogenic heterocyclic aromatic amines (HAA), which are present in urine of smokers and omnivores. AA-I (0.05-10 µM) induced a concentration- and time-dependent cytotoxicity. AA-I (100 nM) DNA adduct formation occurred at over a thousand higher levels than the principal DNA adducts formed with 4-ABP or HAAs (1 µM). dA-AL-I adduct formation was detected down to a 1 nM concentration. Studies with selective chemical inhibitors provided evidence that NQO1 is the major enzyme involved in AA-I bio-activation in RT4 cells, whereas CYP1A1, another enzyme implicated in AA-I toxicity, had a lesser role in bio-activation or detoxification of AA-I. AA-I DNA damage also induced genotoxic stress leading to p53-dependent apoptosis. These biochemical data support the human mutation data and a role for AA-I in BC.


Assuntos
Ácidos Aristolóquicos/toxicidade , Carcinógenos/toxicidade , Dano ao DNA/efeitos dos fármacos , Bexiga Urinária/efeitos dos fármacos , Compostos de Aminobifenil/toxicidade , Ácidos Aristolóquicos/administração & dosagem , Carcinógenos/administração & dosagem , Linhagem Celular Tumoral , Citocromo P-450 CYP1A1/metabolismo , Adutos de DNA/metabolismo , Relação Dose-Resposta a Droga , Humanos , Mutação , NAD(P)H Desidrogenase (Quinona)/metabolismo , Proteína Supressora de Tumor p53/genética , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/patologia
7.
Arch Toxicol ; 93(7): 1893-1902, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31203411

RESUMO

Occupational and tobacco exposure to aromatic amines (AAs) including 4-aminobiphenyl (4-ABP) and 2-naphthylamine (2-NA) are associated with bladder cancer (BC) risk. Several epidemiological studies have also reported a possible role for structurally related heterocyclic aromatic amines (HAAs) formed in tobacco smoke or cooked meats with BC risk. We had screened for DNA adducts of 4-ABP, 2-NA, and several prominent HAAs formed in tobacco smoke or grilled meats including 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylmidazo[4,5-f]quinoxaline (MeIQx), and 2-amino-9H-pyrido[2,3-b]indole (AαC) in the bladder DNA of BC patients, using liquid chromatography/mass spectrometry. We detected DNA adducts of 4-ABP, but not adducts of the other carcinogens. In this study, we have examined the capacity of RT4 cells, an epithelial human bladder cell line, to bioactivate AAs and HAAs to DNA damaging agents, which may contribute to BC. 4-ABP and AαC formed DNA adducts, but DNA adducts of 2-NA, PhIP, and MeIQx were not detected. 4-ABP DNA adducts were formed at tenfold higher levels than AαC adducts. Pretreatment of RT4 cells with α-naphthoflavone (1-10 µM), a specific cytochrome P450 1 (CYP1) inhibitor, decreased AαC adduct formation by 50% but did not affect the level of 4-ABP adducts. However, cell pretreatment with 8-methoxypsoralen (0.1-1 µM), a potent inhibitor of CYP2A, resulted in a 90% decrease of 4-ABP DNA adducts levels. These data signify that CYP2A and CYP1A isoforms expressed in the target urothelium bioactivate 4-ABP and AαC, respectively, and may be a critical feature of aromatic amine-induced urinary bladder carcinogenesis. The bioactivation of other tobacco and environmental AAs by bladder CYPs and their ensuing bladder DNA damage warrants further study.


Assuntos
2-Naftilamina/metabolismo , Compostos de Aminobifenil/metabolismo , Carbolinas/metabolismo , Carcinógenos/metabolismo , 2-Naftilamina/toxicidade , Compostos de Aminobifenil/toxicidade , Carbolinas/toxicidade , Carcinógenos/toxicidade , Linhagem Celular , Cromatografia Líquida , Adutos de DNA/metabolismo , Dano ao DNA/efeitos dos fármacos , Humanos , Espectrometria de Massas , Bexiga Urinária/citologia , Bexiga Urinária/metabolismo
8.
Adv Exp Med Biol ; 1210: 29-55, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31900903

RESUMO

Prostate cancer (PC) is the most commonly diagnosed non-cutaneous cancer and the second leading cause of cancer-related to death in men. The major risk factors for PC are age, family history, and African American ethnicity. Epidemiological studies have reported large geographical variations in PC incidence and mortality, and thus lifestyle and dietary factors influence PC risk. High fat diet, dairy products, alcohol and red meats, are considered as risk factors for PC. This book chapter provides a comprehensive, literature-based review on dietary factors and their molecular mechanisms of prostate carcinogenesis. A large portion of our knowledge is based on epidemiological studies where dietary factors such as cancer promoting agents, including high-fat, dairy products, alcohol, and cancer-initiating genotoxicants formed in cooked meats have been evaluated for PC risk. However, the precise mechanisms in the etiology of PC development remain uncertain. Additional animal and human cell-based studies are required to further our understandings of risk factors involved in PC etiology. Specific biomarkers of chemical exposures and DNA damage in the prostate can provide evidence of cancer-causing agents in the prostate. Collectively, these studies can improve public health research, nutritional education and chemoprevention strategies.


Assuntos
Carcinógenos/administração & dosagem , Carcinógenos/farmacologia , Adutos de DNA/efeitos dos fármacos , Neoplasias da Próstata/genética , Animais , Dieta/efeitos adversos , Humanos , Masculino , Carne/efeitos adversos , Fatores de Risco
9.
Carcinogenesis ; 39(12): 1455-1462, 2018 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-30247550

RESUMO

2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is formed in cooked meats and may be linked to dietary-associated colorectal, prostate and mammary cancers. Genotoxic N-oxidized metabolites of PhIP react with the Cys34 of albumin (Alb) to form a sulfinamide adduct, a biomarker of the biologically effective dose. We examined the kinetics of PhIP-Alb adduct formation in plasma of volunteers on a 4-week semicontrolled diet of cooked meat containing known quantities of PhIP. The adduct was below the limit of detection (LOD) (10 femtograms PhIP/mg Alb) in most subjects before the meat feeding but increased by up to 560-fold at week 4 in subjects who ate meat containing 8.0 to 11.7 µg of PhIP per 150-200 g serving. In contrast, the adduct remained below the LOD in subjects who ingested 1.2 or 3.0 µg PhIP per serving. Correlations were not seen between PhIP-Alb adduct levels and PhIP intake levels (P = 0.76), the amount of PhIP accrued in hair (P = 0.13), the amounts of N-oxidized urinary metabolites of PhIP (P = 0.66) or caffeine CYP1A2 activity (P = 0.55), a key enzyme involved in the bioactivation of PhIP. The half-life of the PhIP-Alb adduct was <2 weeks, signifying that the adduct was not stable. PhIP-Alb adduct formation is direct evidence of bioactivation of PhIP in vivo. However, the PhIP hair biomarker is a longer lived and more sensitive biomarker to assess exposure to this potential human carcinogen.


Assuntos
Carcinógenos/metabolismo , Imidazóis/sangue , Carne/efeitos adversos , Albumina Sérica/química , Biomarcadores/sangue , Biomarcadores/metabolismo , Culinária/métodos , Citocromo P-450 CYP1A2/metabolismo , Monitoramento Ambiental/métodos , Feminino , Cabelo/química , Humanos , Masculino , Neoplasias/sangue , Neoplasias/induzido quimicamente , Neoplasias/metabolismo , Oxirredução
10.
Anal Chem ; 90(16): 9943-9950, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30001485

RESUMO

Tobacco smoking contributes to about 50% of the bladder-cancer (BC) cases in the United States. Some aromatic amines in tobacco smoke are bladder carcinogens; however, other causal agents of BC are uncertain. Exfoliated urinary cells (EUCs) are a promising noninvasive biospecimen to screen for DNA adducts of chemicals that damage the bladder genome, although the analysis of DNA adducts in EUCs is technically challenging because of the low number of EUCs and limiting quantity of cellular DNA. Moreover, EUCs and their DNA adducts must remain viable during the time of collection and storage of urine to develop robust screening methods. We employed RT4 cells, a well-differentiated transitional epithelial bladder cell line, as a cell-model system in urine to investigate cell viability and the chemical stability of DNA adducts of two prototypical bladder carcinogens: 4-aminobiphenyl (4-ABP), an aromatic amine found in tobacco smoke, and aristolochic acid I (AA-I), a nitrophenanthrene found in Aristolochia herbaceous plants used for medicinal purposes worldwide. The cell viability of RT4 cells pretreated with 4-ABP or AA-I in urine exceeded 80%, and the major DNA adducts of 4-ABP and AA-I, quantified by liquid chromatography-mass spectrometry, were stable for 24 h. Thereafter, we successfully screened EUCs of mice treated with AA-I to measure DNA adducts of AA-I, which were still detected 25 days following treatment with the carcinogen. EUCs are promising biospecimens that can be employed for the screening of DNA adducts of environmental and dietary genotoxicants that may contribute to the development of BC.


Assuntos
Adutos de DNA/análise , Monitoramento Ambiental/métodos , Células Epiteliais/metabolismo , Urina/citologia , Compostos de Aminobifenil/química , Animais , Ácidos Aristolóquicos/química , Carcinógenos/química , Linhagem Celular , Cromatografia Líquida , Adutos de DNA/química , Humanos , Masculino , Espectrometria de Massas , Camundongos Endogâmicos C57BL
11.
Chem Res Toxicol ; 30(2): 657-668, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-27976871

RESUMO

2-Amino-9H-pyrido[2,3-b]indole (AαC) is the most abundant carcinogenic heterocyclic aromatic amine (HAA) formed in mainstream tobacco smoke. AαC is a liver carcinogen in rodents, but its carcinogenic potential in humans is not known. To obtain a better understanding of the genotoxicity of AαC in humans, we have investigated its metabolism and its ability to form DNA adducts in human hepatocytes. Primary human hepatocytes were treated with AαC at doses ranging from 0.1-50 µM, and the metabolites were characterized by ultra-performance LC/ion trap multistage mass spectrometry (UPLC/MSn). Six major metabolites were identified: a ring-oxidized doubly conjugated metabolite, N2-acetyl-2-amino-9H-pyrido[2,3-b]indole-6-yl-oxo-(ß-d-glucuronic acid) (N2-acetyl-AαC-6-O-Gluc); two ring-oxidized glucuronide (Gluc) conjugates: 2-amino-9H-pyrido[2,3-b]indol-3-yl-oxo-(ß-d-glucuronic acid) (AαC-3-O-Gluc) and 2-amino-9H-pyrido[2,3-b]indol-6-yl-oxo-(ß-d-glucuronic acid) (AαC-6-O-Gluc); two sulfate conjugates, 2-amino-9H-pyrido[2,3-b]indol-3-yl sulfate (AαC-3-O-SO3H) and 2-amino-9H-pyrido[2,3-b]indol-6-yl sulfate (AαC-6-O-SO3H); and the Gluc conjugate, N2-(ß-d-glucosidurony1)-2-amino-9H-pyrido[2,3-b]indole (AαC-N2-Gluc). In addition, four minor metabolites were identified: N2-acetyl-9H-pyrido[2,3-b]indol-3-yl sulfate (N2-acetyl-AαC-3-O-SO3H), N2-acetyl-9H-pyrido[2,3-b]indol-6-yl sulfate (N2-acetyl-AαC-6-O-SO3H), N2-acetyl-2-amino-9H-pyrido[2,3-b]indol-3-yl-oxo-(ß-d-glucuronic acid) (N2-acetyl-AαC-3-O-Gluc), and O-(ß-d-glucosidurony1)-2-hydroxyamino-9H-pyrido[2,3-b]indole (AαC-HN2-O-Gluc). The latter metabolite, AαC-HN2-O-Gluc is a reactive intermediate that binds to DNA to form the covalent adduct N-(2'-deoxyguanosin-8-yl)-2-amino-9H-pyrido[2,3-b]indole (dG-C8-AαC). Preincubation of hepatocytes with furafylline, a selective mechanism-based inhibitor of P450 1A2, resulted in a strong decrease in the formation of AαC-HN2-O-Gluc and a concomitant decrease in DNA adduct formation. Our findings describe the major pathways of metabolism of AαC in primary human hepatocytes and reveal the importance of N-acetylation and glucuronidation in metabolism of AαC. P450 1A2 is a major isoform involved in the bioactivation of AαC to form the reactive AαC-HN2-O-Gluc conjugate and AαC-DNA adducts.


Assuntos
Carbolinas/metabolismo , Hepatócitos/metabolismo , Nicotiana/química , Células Cultivadas , Cromatografia Líquida , Humanos , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Ultravioleta
12.
Chem Res Toxicol ; 30(6): 1333-1343, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28493705

RESUMO

Aromatic amines covalently bound to hemoglobin (Hb) as sulfinamide adducts at the cysteine 93 residue of the Hb ß chain have served as biomarkers to assess exposure to this class of human carcinogens for the past 30 years. In this study, we report that 2-amino-9H-pyrido[2,3-b]indole (AαC), an abundant carcinogenic heterocyclic aromatic amine formed in tobacco smoke and charred cooked meats, also reacts with Hb to form a sulfinamide adduct. A novel nanoflow liquid chromatography/ion trap multistage mass spectrometry (nanoLC-IT/MS3) method was established to assess exposure to AαC and the tobacco-associated bladder carcinogen 4-aminobiphenyl (4-ABP) through their Hb sulfinamide adducts. Following mild acid hydrolysis of Hb in vitro, the liberated AαC and 4-ABP were derivatized with acetic anhydride to form the N-acetylated amines, which were measured by nanoLC-IT/MS3. The limits of quantification (LOQ) for AαC- and 4-ABP-Hb sulfinamide adducts were ≤7.1 pg/g Hb. In a pilot study, the mean level of Hb sulfinamide adducts of AαC and 4-ABP were, respectively, 3.4-fold and 4.8-fold higher in smokers (>20 cigarettes/day) than nonsmokers. In contrast, the major DNA adducts of 4-ABP, N-(2'-deoxyguanosin-8-yl)-4-aminobiphenyl, and AαC, N-(2'-deoxyguanosin-8-yl)-2-amino-9H-pyrido[2,3-b]indole, were below the LOQ (3 adducts per 109 bases) in white blood cell (WBC) DNA of smokers and nonsmokers. These findings reaffirm that tobacco smoke is a major source of exposure to AαC. Hb sulfinamide adducts are suitable biomarkers to biomonitor 4-ABP and AαC; however, neither carcinogen binds to DNA in WBC, even in heavy smokers, at levels sufficient for biomonitoring.


Assuntos
Compostos de Aminobifenil/química , Carbolinas/química , Carcinógenos/química , Adutos de DNA/análise , Hemoglobinas/química , Leucócitos/metabolismo , Nicotiana/química , Cromatografia Líquida de Alta Pressão , Adutos de DNA/química , Hemoglobinas/análise , Humanos , Espectrometria de Massas , Estrutura Molecular , Nanotecnologia , Sulfamerazina/análise , Sulfamerazina/química
13.
J Biol Chem ; 290(26): 16304-18, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-25953894

RESUMO

2-Amino-9H-pyrido[2,3-b]indole (AαC) is a carcinogenic heterocyclic aromatic amine formed during the combustion of tobacco. AαC undergoes bioactivation to form electrophilic N-oxidized metabolites that react with DNA to form adducts, which can lead to mutations. Many genotoxicants and toxic electrophiles react with human serum albumin (albumin); however, the chemistry of reactivity of AαC with proteins has not been studied. The genotoxic metabolites, 2-hydroxyamino-9H-pyrido[2,3-b]indole (HONH-AαC), 2-nitroso-9H-pyrido[2,3-b]indole (NO-AαC), N-acetyloxy-2-amino-9H-pyrido[2,3-b]indole (N-acetoxy-AαC), and their [(13)C6]AαC-labeled homologues were reacted with albumin. Sites of adduction of AαC to albumin were identified by data-dependent scanning and targeted bottom-up proteomics approaches employing ion trap and Orbitrap MS. AαC-albumin adducts were formed at Cys(34), Tyr(140), and Tyr(150) residues when albumin was reacted with HONH-AαC or NO-AαC. Sulfenamide, sulfinamide, and sulfonamide adduct formation occurred at Cys(34) (AαC-Cys(34)). N-Acetoxy-AαC also formed an adduct at Tyr(332). Albumin-AαC adducts were characterized in human plasma treated with N-oxidized metabolites of AαC and human hepatocytes exposed to AαC. High levels of N-(deoxyguanosin-8-yl)-AαC (dG-C8-AαC) DNA adducts were formed in hepatocytes. The Cys(34) was the sole amino acid of albumin to form adducts with AαC. Albumin also served as an antioxidant and scavenged reactive oxygen species generated by metabolites of AαC in hepatocytes; there was a strong decrease in reduced Cys(34), whereas the levels of Cys(34) sulfinic acid (Cys-SO2H), Cys(34)-sulfonic acid (Cys-SO3H), and Met(329) sulfoxide were greatly increased. Cys(34) adduction products and Cys-SO2H, Cys-SO3H, and Met(329) sulfoxide may be potential biomarkers to assess exposure and oxidative stress associated with AαC and other arylamine toxicants present in tobacco smoke.


Assuntos
Carbolinas/química , Adutos de DNA/química , Nicotiana/efeitos adversos , Albumina Sérica/química , Fumaça/efeitos adversos , Compostos de Sulfidrila/química , Motivos de Aminoácidos , Biomarcadores/química , Biomarcadores/metabolismo , Carbolinas/efeitos adversos , Carbolinas/metabolismo , Adutos de DNA/genética , Adutos de DNA/metabolismo , Hepatócitos/química , Hepatócitos/metabolismo , Humanos , Oxirredução , Albumina Sérica/metabolismo , Compostos de Sulfidrila/metabolismo , Nicotiana/química , Nicotiana/metabolismo
14.
J Cell Biochem ; 117(3): 708-20, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26331987

RESUMO

Mechanical forces influence the growth and shape of virtually all tissues and organs. Recent studies show that increased cell contractibility, growth and differentiation might be normalized by modulating cell tensions. Particularly, the role of these tensions applied by the extracellular matrix during liver fibrosis could influence the hepatocarcinogenesis process. The objective of this study is to determine if 3D stiffness could influence growth and phenotype of normal and transformed hepatocytes and to integrate extracellular matrix (ECM) stiffness to tensional homeostasis. We have developed an appropriate 3D culture model: hepatic cells within three-dimensional collagen matrices with varying rigidity. Our results demonstrate that the rigidity influenced the cell phenotype and induced spheroid clusters development whereas in soft matrices, Huh7 transformed cells were less proliferative, well-spread and flattened. We confirmed that ERK1 played a predominant role over ERK2 in cisplatin-induced death, whereas ERK2 mainly controlled proliferation. As compared to 2D culture, 3D cultures are associated with epithelial markers expression. Interestingly, proliferation of normal hepatocytes was also induced in rigid gels. Furthermore, biotransformation activities are increased in 3D gels, where CYP1A2 enzyme can be highly induced/activated in primary culture of human hepatocytes embedded in the matrix. In conclusion, we demonstrated that increasing 3D rigidity could promote proliferation and spheroid developments of liver cells demonstrating that 3D collagen gels are an attractive tool for studying rigidity-dependent homeostasis of the liver cells embedded in the matrix and should be privileged for both chronic toxicological and pharmacological drug screening.


Assuntos
Proliferação de Células , Meios de Cultura/química , Hepatócitos/fisiologia , Esferoides Celulares/fisiologia , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Colágeno/química , Géis , Dureza , Humanos , Cirrose Hepática/patologia , Sistema de Sinalização das MAP Quinases , Ratos
15.
Chem Res Toxicol ; 28(5): 1045-59, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-25815793

RESUMO

2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a carcinogenic heterocyclic aromatic amine formed in cooked meats, is metabolically activated to electrophilic intermediates that form covalent adducts with DNA and protein. We previously identified an adduct of PhIP formed at the Cys(34) residue of human serum albumin following reaction of albumin with the genotoxic metabolite 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine (HONH-PhIP). The major adducted peptide recovered from a tryptic/chymotryptic digest was identified as the missed-cleavage peptide LQQC*([SO2PhIP])PFEDHVK, a [cysteine-S-yl-PhIP]-S-dioxide linked adduct. In this investigation, we have characterized the albumin adduction products of N-sulfooxy-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-sulfooxy-PhIP), which is thought to be a major genotoxic metabolite of PhIP formed in vivo. Targeted and data-dependent scanning methods showed that N-sulfooxy-PhIP adducted to the Cys(34) of albumin in human plasma to form LQQC*([SO2PhIP])PFEDHVK at levels that were 8-10-fold greater than the adduct levels formed with N-(acetyloxy)-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-acetoxy-PhIP) or HONH-PhIP. We also discovered that N-sulfooxy-PhIP forms an adduct at the sole tryptophan (Trp(214)) residue of albumin in the sequence AW*([PhIP])AVAR. However, stable adducts of PhIP with albumin were not detected in human hepatocytes. Instead, PhIP and 2-amino-1-methyl-6-(5-hydroxy)phenylimidazo[4,5-b]pyridine (5-HO-PhIP), a solvolysis product of the proposed nitrenium ion of PhIP, were recovered during the proteolysis, suggesting a labile sulfenamide linkage had formed between an N-oxidized intermediate of PhIP and Cys(34) of albumin. A stable adduct was formed at the Tyr(411) residue of albumin in hepatocytes and identified as a deaminated product of PhIP, Y(*[desaminoPhIP])TK, where the 4-HO-tyrosine group bound to the C-2 imidazole atom of PhIP.


Assuntos
Carcinógenos/metabolismo , Adutos de DNA/metabolismo , Hepatócitos/efeitos dos fármacos , Imidazóis/metabolismo , Albumina Sérica/metabolismo , Carcinógenos/análise , Cromatografia Líquida de Alta Pressão , Culinária , Adutos de DNA/química , Hepatócitos/química , Hepatócitos/metabolismo , Humanos , Imidazóis/análise , Modelos Moleculares , Oxirredução , Albumina Sérica/química , Espectrometria de Massas por Ionização por Electrospray
16.
Chem Res Toxicol ; 26(9): 1367-77, 2013 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-23898916

RESUMO

Aromatic amines and structurally related heterocyclic aromatic amines (HAAs) are produced during the combustion of tobacco or during the high-temperature cooking of meat. Exposure to some of these chemicals may contribute to the etiology of several common types of human cancers. 2-Amino-9H-pyrido[2,3-b]indole (AαC) is the most abundant HAA formed in mainstream tobacco smoke: it arises in amounts that are 25-100 times greater than the levels of the arylamine, 4-aminobiphenyl (4-ABP), a human carcinogen. 2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) is a prevalent HAA formed in cooked meats. AαC and MeIQx are rodent carcinogens; however, their carcinogenic potency in humans is unknown. A preliminary assessment of the carcinogenic potential of these HAAs in humans was conducted by examining the capacity of primary human hepatocytes to form DNA adducts of AαC and MeIQx, in comparison to 4-ABP, followed by the kinetics of DNA adduct removal by cellular enzyme repair systems. The principal DNA adducts formed were N-(deoxyguanosin-8-yl) (dG-C8) adducts. Comparable levels of DNA adducts were formed with AαC and 4-ABP, whereas adduct formation was ∼5-fold lower for MeIQx. dG-C8-AαC and dG-C8-4-ABP were formed at comparable levels in a concentration-dependent manner in human hepatocytes treated with procarcinogens over a 10,000-fold concentration range (1 nM-10 µM). Pretreatment of hepatocytes with furafylline, a selective inhibitor of cytochrome P450 1A2, resulted in a strong diminution of DNA adducts signifying that P450 1A2 is a major P450 isoform involved in bioactivation of these procarcinogens. The kinetics of adduct removal varied for each hepatocyte donor. Approximately half of the DNA adducts were removed within 24 h of treatment; however, the remaining lesions persisted over 5 days. The high levels of AαC present in tobacco smoke and its propensity to form persistent DNA adducts in human hepatocytes suggest that AαC can contribute to DNA damage and the risk of hepatocellular cancer in smokers.


Assuntos
Compostos de Aminobifenil/farmacologia , Carbolinas/farmacologia , Carcinógenos/farmacologia , Adutos de DNA/efeitos dos fármacos , Exposição Ambiental/efeitos adversos , Hepatócitos/efeitos dos fármacos , Nicotiana/química , Compostos de Aminobifenil/síntese química , Compostos de Aminobifenil/química , Carbolinas/síntese química , Carbolinas/química , Carcinógenos/síntese química , Carcinógenos/química , Células Cultivadas , Citocromo P-450 CYP1A2/metabolismo , Inibidores do Citocromo P-450 CYP1A2 , Adutos de DNA/síntese química , Adutos de DNA/química , Relação Dose-Resposta a Droga , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Relação Estrutura-Atividade
17.
ACS Chem Biol ; 18(6): 1315-1323, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37200590

RESUMO

The combination of doxorubicin (Adriamycin) and cyclophosphamide, referred to as AC chemotherapy, is commonly used for the clinical treatment of breast and other cancers. Both agents target DNA with cyclophosphamide causing alkylation damage and doxorubicin stabilizing the topoisomerase II-DNA complex. We hypothesize a new mechanism of action whereby both agents work in concert. DNA alkylating agents, such as nitrogen mustards, increase the number of apurinic/apyrimidinic (AP) sites through deglycosylation of labile alkylated bases. Herein, we demonstrate that anthracyclines with aldehyde-reactive primary and secondary amines form covalent Schiff base adducts with AP sites in a 12-mer DNA duplex, calf thymus DNA, and MDA-MB-231 human breast cancer cells treated with nor-nitrogen mustard and the anthracycline mitoxantrone. The anthracycline-AP site conjugates are characterized and quantified by mass spectrometry after NaB(CN)H3 or NaBH4 reduction of the Schiff base. If stable, the anthracycline-AP site conjugates represent bulky adducts that may block DNA replication and contribute to the cytotoxic mechanism of therapies involving combinations of anthracyclines and DNA alkylating agents.


Assuntos
Antraciclinas , Bases de Schiff , Humanos , Antraciclinas/farmacologia , Bases de Schiff/farmacologia , DNA/genética , Dano ao DNA , Inibidores da Topoisomerase II , Doxorrubicina/farmacologia , Antibióticos Antineoplásicos , Alquilantes , Ciclofosfamida , Reparo do DNA , Adutos de DNA
18.
Genes Environ ; 43(1): 29, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34271992

RESUMO

Heterocyclic aromatic amines (HAAs) form during the high-temperature cooking of meats, poultry, and fish. Some HAAs also arise during the combustion of tobacco. HAAs are multisite carcinogens in rodents, inducing cancer of the liver, gastrointestinal tract, pancreas, mammary, and prostate glands. HAAs undergo metabolic activation by N-hydroxylation of the exocyclic amine groups to produce the proposed reactive intermediate, the heteroaryl nitrenium ion, which is the critical metabolite implicated in DNA damage and genotoxicity. Humans efficiently convert HAAs to these reactive intermediates, resulting in HAA protein and DNA adduct formation. Some epidemiologic studies have reported an association between frequent consumption of well-done cooked meats and elevated cancer risk of the colorectum, pancreas, and prostate. However, other studies have reported no associations between cooked meat and these cancer sites. A significant limitation in epidemiology studies assessing the role of HAAs and cooked meat in cancer risk is their reliance on food frequency questionnaires (FFQ) to gauge HAA exposure. FFQs are problematic because of limitations in self-reported dietary history accuracy, and estimating HAA intake formed in cooked meats at the parts-per-billion level is challenging. There is a critical need to establish long-lived biomarkers of HAAs for implementation in molecular epidemiology studies designed to assess the role of HAAs in health risk. This review article highlights the mechanisms of HAA formation, mutagenesis and carcinogenesis, the metabolism of several prominent HAAs, and the impact of critical xenobiotic-metabolizing enzymes on biological effects. The analytical approaches that have successfully biomonitored HAAs and their biomarkers for molecular epidemiology studies are presented.

19.
Food Chem Toxicol ; 147: 111855, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33189884

RESUMO

2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a possible human carcinogen formed in cooked fish and meat. PhIP is bioactivated by cytochrome P450 enzymes to form 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-OH-PhIP), a genotoxic metabolite that reacts with DNA leading to the mutation-prone DNA adduct N-(deoxyguanosin-8-yl)-PhIP (dG-C8-PhIP). Here, we studied N-OH-PhIP-induced whole genome mutagenesis in human TP53 knock-in (Hupki) mouse embryo fibroblasts (HUFs) immortalised and subjected to whole genome sequencing (WGS). In addition, mutagenicity of N-OH-PhIP in TP53 and the lacZ reporter gene were assessed. TP53 mutant frequency in HUF cultures treated with N-OH-PhIP (2.5 µM for 24 h, n = 90) was 10% while no TP53 mutations were found in untreated controls (DMSO for 24 h, n = 6). All N-OH-PhIP-induced TP53 mutations occurred at G:C base pairs with G > T/C > A transversions accounting for 58% of them. TP53 mutations characteristic of those induced by N-OH-PhIP have been found in human tumours including breast and colorectal, which are cancer types that have been associated with PhIP exposure. LacZ mutant frequency increased 25-fold at 5 µM N-OH-PHIP and up to ~350 dG-C8-PhIP adducts/108 nucleosides were detected by ultra-performance liquid chromatography-electrospray ionisation multistage scan mass spectrometry (UPLC-ESI-MS3) at this concentration. In addition, a WGS mutational signature defined by G > T/C > A transversions was present in N-OH-PhIP-treated immortalised clones, which showed similarity to COSMIC SBS4, 18 and 29 signatures found in human tumours.


Assuntos
Fibroblastos/efeitos dos fármacos , Imidazóis/toxicidade , Piridinas/toxicidade , Proteína Supressora de Tumor p53/metabolismo , Animais , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Humanos , Camundongos , Testes de Mutagenicidade , Proteína Supressora de Tumor p53/genética
20.
Toxicol Sci ; 163(2): 543-556, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29596660

RESUMO

2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), an heterocyclic aromatic amine (HAA) formed in cooked meat, is a rodent and possible human prostate carcinogen. Recently, we identified DNA adducts of PhIP in the genome of prostate cancer patients, but adducts of 2-amino-3, 8-dimethylmidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-9 H-pyrido[2,3-b]indole (AαC), other prominent HAAs formed in cooked meats, were not detected. We have investigated the bioactivation of HAAs by Phase I and II enzymes in the human prostate (LNCaP) cell line using cytotoxicity and DNA adducts as endpoints. PhIP, MeIQx, and 2-amino-3-methylimidazo[4,5-f]quinoline, another HAA found in cooked meats, were poorly bioactivated and not toxic. The synthetic genotoxic N-hydroxylated-HAAs were also assayed in LNCaP cells with Phase II enzyme inhibitors. Notably, 2-hydroxy-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (HONH-PhIP), but not other HONH-HAAs, induced cytotoxicity. Moreover, PhIP-DNA adduct formation was 20-fold greater than adducts formed with other HONH-HAAs. Pretreatment of LNCaP cells with mefenamic acid, a specific inhibitor of sulfotransferase (SULT1A1), decreased PhIP-DNA adducts by 25%, whereas (Z)-5-(2'-hydroxybenzylidene)-2-thioxothiazolidin-4-one and pentachlorophenol, inhibitors of SULTs and N-acetyltransferases (NATs), decreased the PhIP-DNA adduct levels by 75%. NATs in cytosolic fractions of LNCaP cells and human prostate catalyzed DNA binding of HONH-PhIP by up to 100-fold greater levels than for SULT and kinase activities. Recombinant NAT2 is catalytically superior to recombinant NAT1 in the bioactivation of HONH-PhIP; however, the extremely low levels of NAT2 activity in prostate suggest that NAT1 may be the major isoform involved in PhIP-DNA damage. Thus, the high susceptibility of LNCaP cells recapitulates the DNA-damaging effect of HONH-PhIP in rodent and human prostate.


Assuntos
Ativação Metabólica/efeitos dos fármacos , Carcinógenos/toxicidade , Adutos de DNA/metabolismo , Imidazóis/metabolismo , Imidazóis/toxicidade , Carne , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Culinária , Citosol/efeitos dos fármacos , Citosol/metabolismo , Humanos , Masculino , Carne/análise , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Pessoa de Meia-Idade , Próstata/patologia , Neoplasias da Próstata/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA