Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
IUBMB Life ; 75(1): 55-65, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35689524

RESUMO

Neuromelanins are compounds accumulating in neurons of human and animal brain during aging, with neurons of substantia nigra and locus coeruleus having the highest levels of neuromelanins. These compounds have melanic, lipid, peptide, and inorganic components and are contained inside special autolysosomes. Neuromelanins can participate in neuroprotective or toxic processes occurring in Parkinson's disease according to cellular environment. Their synthesis depends on the concentration of cytosolic catechols and is a protective process since it prevents the toxic accumulation of catechols-derived reactive compounds. Neuromelanins can be neuroprotective also by binding reactive/toxic metals to produce stable and non-toxic complexes. Extraneuronal neuromelanin released by dying dopamine neurons in Parkinson's disease activates microglia which generate reactive oxygen species, reactive nitrogen species, and proinflammatory molecules, thus producing still neuroinflammation and neuronal death. Synthetic neuromelanins have been prepared with melanic, protein structure, and metal content closely mimicking the natural brain pigment, and these models are also able to activate microglia. Neuromelanins have different structure, synthesis, cellular/subcellular distribution, and role than melanins of hair, skin, and other tissues. The main common aspect between brain neuromelanin and peripheral melanin is the presence of eumelanin and/or pheomelanin moieties in their structure.


Assuntos
Doença de Parkinson , Animais , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doenças Neuroinflamatórias , Encéfalo/metabolismo , Melaninas/química , Melaninas/metabolismo , Neurônios Dopaminérgicos/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(11): 5108-5117, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30796187

RESUMO

Neuromelanin-sensitive MRI (NM-MRI) purports to detect the content of neuromelanin (NM), a product of dopamine metabolism that accumulates with age in dopamine neurons of the substantia nigra (SN). Interindividual variability in dopamine function may result in varying levels of NM accumulation in the SN; however, the ability of NM-MRI to measure dopamine function in nonneurodegenerative conditions has not been established. Here, we validated that NM-MRI signal intensity in postmortem midbrain specimens correlated with regional NM concentration even in the absence of neurodegeneration, a prerequisite for its use as a proxy for dopamine function. We then validated a voxelwise NM-MRI approach with sufficient anatomical sensitivity to resolve SN subregions. Using this approach and a multimodal dataset of molecular PET and fMRI data, we further showed the NM-MRI signal was related to both dopamine release in the dorsal striatum and resting blood flow within the SN. These results suggest that NM-MRI signal in the SN is a proxy for function of dopamine neurons in the nigrostriatal pathway. As a proof of concept for its clinical utility, we show that the NM-MRI signal correlated to severity of psychosis in schizophrenia and individuals at risk for schizophrenia, consistent with the well-established dysfunction of the nigrostriatal pathway in psychosis. Our results indicate that noninvasive NM-MRI is a promising tool that could have diverse research and clinical applications to investigate in vivo the role of dopamine in neuropsychiatric illness.


Assuntos
Encéfalo/metabolismo , Dopamina/metabolismo , Imageamento por Ressonância Magnética , Melaninas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Meios de Contraste , Feminino , Humanos , Masculino , Mesencéfalo/metabolismo , Pessoa de Meia-Idade , Mudanças Depois da Morte , Transtornos Psicóticos/diagnóstico por imagem , Reprodutibilidade dos Testes , Razão Sinal-Ruído , Substância Negra/metabolismo
3.
Proc Natl Acad Sci U S A ; 105(45): 17567-72, 2008 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-18988735

RESUMO

Neuronal pigments of melanic type were identified in the putamen, cortex, cerebellum, and other major regions of human brain. These pigments consist of granules 30 nm in size, contained in organelles together with lipid droplets, and they accumulate in aging, reaching concentrations as high as 1.5-2.6 microg/mg tissue in major brain regions. These pigments, which we term neuromelanins, contain melanic, lipid, and peptide components. The melanic component is aromatic in structure, contains a stable free radical, and is synthesized from the precursor molecule cysteinyl-3,4-dihydroxyphenylalanine. This contrasts with neuromelanin of the substantia nigra, where the melanic precursor is cysteinyl-dopamine. These neuronal pigments have some structural similarities to the melanin found in skin. The precursors of lipid components of the neuromelanins are the polyunsaturated lipids present in the surrounding organelles. The synthesis of neuromelanins in the various regions of the human brain is an important protective process because the melanic component is generated through the removal of reactive/toxic quinones that would otherwise cause neurotoxicity. Furthermore, the resulting melanic component serves an additional protective role through its ability to chelate and accumulate metals, including environmentally toxic metals such as mercury and lead.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Poluentes Ambientais/metabolismo , Melaninas/biossíntese , Metais Pesados/metabolismo , Neurônios/química , Organelas/química , Encéfalo/ultraestrutura , Humanos , Melaninas/química , Microscopia Eletrônica , Neurônios/citologia
4.
Arch Biochem Biophys ; 484(1): 94-9, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19467634

RESUMO

Neuromelanin (NM) isolated from seven regions of the human brain is found to contain series of natural and oxidized isoprenoid lipids. Specifically, dolichols (dol) and dolichoic acids (dol-CA) with 14-22 and 14-21 isoprene units are identified. Standards of nor-dolichol and nor-dolichoic acid were used to determine the relative amounts of dol and dol-CA compared to the total lipids present in NM for each region. The cerebellum, putamen, globus pallidus, and premotor cortex contained similar amounts of dol, comprising approximately 8-9.5% of the total lipid weight. Interestingly, the corpus callosum contains substantially lower quantities of both dol and dol-CA compared to the other regions-less than 4% dol relative to the total lipid weight. Oxidized and reduced dolichol-related species were identified and determined to be region-dependent.


Assuntos
Encéfalo/metabolismo , Metabolismo dos Lipídeos , Melaninas/metabolismo , Terpenos/metabolismo , Cromatografia Líquida de Alta Pressão , Humanos , Espectrometria de Massas , Oxirredução
5.
Photochem Photobiol ; 85(1): 387-90, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19067944

RESUMO

Neuromelanin isolated from the premotor cortex, cerebellum, putamen, globus pallidus and corpus callosum of the human brain is studied by scanning probe and photoelectron emission microscopies and the results are compared with previously published work on neuromelanin from the substantia nigra. Scanning electron microscopy reveals common structure for all neuromelanins. All exhibit spherical entities of diameters between 200 and 400 nm, composed of smaller spherical substructures, approximately 30 nm in diameter. These features are similar to that observed for many melanin systems including Sepia cuttlefish, bovine eye, and human eye and hair melanosomes. Photoelectron microscopy images were collected for all neuromelanins at specific wavelengths of ultraviolet light between 248 and 413 nm, using the spontaneous emission output from the Duke free electron laser. Analysis of the data establishes a common threshold photoionization potential for neuromelanins of 4.7 +/- 0.2 eV, corresponding to an oxidation potential of -0.3 +/- 0.2 V vs the normal hydrogen electrode (NHE). These results are consistent with previously reported potentials for neuromelanin from the substantia nigra of 4.5 +/- 0.2 eV (-0.1 +/- 0.2 V vs NHE). All neuromelanins exhibit a common low surface oxidation potential, reflecting their eumelanic component and their inability to trigger redox processes with neurotoxic effect.


Assuntos
Encéfalo/metabolismo , Encéfalo/efeitos da radiação , Melaninas/biossíntese , Melaninas/isolamento & purificação , Humanos , Microscopia Eletrônica de Varredura , Processos Fotoquímicos
6.
J Neurochem ; 106(4): 1866-75, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18624918

RESUMO

In Parkinson's disease (PD), dopamine neurons containing neuromelanin selectively degenerate. Neuromelanin binds iron and accumulates in aging. Iron accumulates in reactive form during aging, PD, and is involved in neurodegeneration. It is not clear how the interaction of neuromelanin and iron can be protective or toxic by modulating redox processes. Here, we investigated the interaction of neuromelanin from human substantia nigra with iron in the presence of ascorbic acid, dopamine, and hydrogen peroxide. We observed that neuromelanin blocks hydroxyl radical production by Fenton's reaction, in a dose-dependent manner. Neuromelanin also inhibited the iron-mediated oxidation of ascorbic acid, thus sparing this major antioxidant molecule in brain. The protective effect of neuromelanin on ascorbate oxidation occurs even in conditions of iron overload into neuromelanin. The blockade of iron into a stable iron-neuromelanin complex prevents dopamine oxidation, inhibiting the formation of neurotoxic dopamine quinones. The above processes occur intraneuronally in aging and PD, thus showing that neuromelanin is neuroprotective. The iron-neuromelanin complex is completely decomposed by hydrogen peroxide and its degradation rate increases with the amount of iron bound to neuromelanin. This occurs in PD when extraneuronal iron-neuromelanin is phagocytosed by microglia and iron-neuromelanin degradation releases reactive/toxic iron.


Assuntos
Envelhecimento/metabolismo , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/prevenção & controle , Melaninas/fisiologia , Estresse Oxidativo/fisiologia , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Feminino , Humanos , Peróxido de Hidrogênio , Ferro/efeitos adversos , Sobrecarga de Ferro/patologia , Masculino , Melaninas/metabolismo , Melaninas/uso terapêutico , Pessoa de Meia-Idade , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/patologia , Doença de Parkinson/prevenção & controle , Substância Negra/patologia
7.
NPJ Parkinsons Dis ; 4: 17, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29900402

RESUMO

During aging, neuronal organelles filled with neuromelanin (a dark-brown pigment) and lipid bodies accumulate in the brain, particularly in the substantia nigra, a region targeted in Parkinson's disease. We have investigated protein and lipid systems involved in the formation of these organelles and in the synthesis of the neuromelanin of human substantia nigra. Membrane and matrix proteins characteristic of lysosomes were found in neuromelanin-containing organelles at a lower number than in typical lysosomes, indicating a reduced enzymatic activity and likely impaired capacity for lysosomal and autophagosomal fusion. The presence of proteins involved in lipid transport may explain the accumulation of lipid bodies in the organelle and the lipid component in neuromelanin structure. The major lipids observed in lipid bodies of the organelle are dolichols with lower amounts of other lipids. Proteins of aggregation and degradation pathways were present, suggesting a role for accumulation by this organelle when the ubiquitin-proteasome system is inadequate. The presence of proteins associated with aging and storage diseases may reflect impaired autophagic degradation or impaired function of lysosomal enzymes. The identification of typical autophagy proteins and double membranes demonstrates the organelle's autophagic nature and indicates that it has engulfed neuromelanin precursors from the cytosol. Based on these data, it appears that the neuromelanin-containing organelle has a very slow turnover during the life of a neuron and represents an intracellular compartment of final destination for numerous molecules not degraded by other systems.

8.
PLoS One ; 7(11): e48490, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23139786

RESUMO

Neuromelanins (NMs) are neuronal pigments of melanic-lipidic type which accumulate during aging. They are involved in protective and degenerative mechanisms depending on the cellular context, however their structures are still poorly understood. NMs from nine human brain areas were analyzed in detail. Elemental analysis led to identification of three types of NM, while infrared spectroscopy showed that NMs from neurons of substantia nigra and locus coeruleus, which selectively degenerate in Parkinson's disease, have similar structure but different from NMs from brain regions not targeted by the disease. Synthetic melanins containing Fe and bovine serum albumin were prepared to model the natural product and help clarifying the structure of NMs. Extensive nuclear magnetic resonance spectroscopy studies showed the presence of dolichols both in the soluble and insoluble parts of NM. Diffusion measurements demonstrated that the dimethyl sulfoxide soluble components consist of oligomeric precursors with MWs in the range 1.4-52 kDa, while the insoluble part contains polymers of larger size but with a similar composition. These data suggest that the selective vulnerability of neurons of substantia nigra and locus coeruleus in Parkinson's disease might depend on the structure of the pigment. Moreover, they allow to propose a pathway for NM biosynthesis in human brain.


Assuntos
Encéfalo/metabolismo , Dolicóis/metabolismo , Melaninas/metabolismo , Aminoácidos/metabolismo , Animais , Encéfalo/patologia , Carbono/metabolismo , Bovinos , Difusão , Humanos , Fígado/metabolismo , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Transmissão , Nitrogênio/metabolismo , Solubilidade , Soluções , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA