Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Neurosci ; 43(48): 8104-8125, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37816598

RESUMO

In the brain, microRNAs (miRNAs) are believed to play a role in orchestrating synaptic plasticity at a higher level by acting as an additional mechanism of translational regulation, alongside the mRNA/polysome system. Despite extensive research, our understanding of the specific contribution of individual miRNA to the function of dopaminergic neurons (DAn) remains limited. By performing a dopaminergic-specific miRNA screening, we have identified miR-218 as a critical regulator of DAn activity in male and female mice. We have found that miR-218 is specifically expressed in mesencephalic DAn and is able to promote dopaminergic differentiation of embryonic stem cells and functional maturation of transdifferentiated induced DA neurons. Midbrain-specific deletion of both genes encoding for miR-218 (referred to as miR-218-1 and mir218-2) affects the expression of a cluster of synaptic-related mRNAs and alters the intrinsic excitability of DAn, as it increases instantaneous frequencies of evoked action potentials, reduces rheobase current, affects the ionic current underlying the action potential after hyperpolarization phase, and reduces dopamine efflux in response to a single electrical stimulus. Our findings provide a comprehensive understanding of the involvement of miR-218 in the dopaminergic system and highlight its role as a modulator of dopaminergic transmission.SIGNIFICANCE STATEMENT In the past decade, several miRNAs have emerged as potential regulators of synapse activity through the modulation of specific gene expression. Among these, we have identified a dopaminergic-specific miRNA, miR-218, which is able to promote dopaminergic differentiation and regulates the translation of an entire cluster of synapse related mRNAs. Deletion of miR-218 has notable effects on dopamine release and alters the intrinsic excitability of dopaminergic neurons, indicating a direct control of dopaminergic activity by miR-218.


Assuntos
Dopamina , MicroRNAs , Camundongos , Masculino , Feminino , Animais , Dopamina/metabolismo , Diferenciação Celular , Neurônios Dopaminérgicos/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Neurotransmissores/metabolismo
2.
EMBO J ; 37(7)2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29282205

RESUMO

Neural development is accomplished by differentiation events leading to metabolic reprogramming. Glycosphingolipid metabolism is reprogrammed during neural development with a switch from globo- to ganglio-series glycosphingolipid production. Failure to execute this glycosphingolipid switch leads to neurodevelopmental disorders in humans, indicating that glycosphingolipids are key players in this process. Nevertheless, both the molecular mechanisms that control the glycosphingolipid switch and its function in neurodevelopment are poorly understood. Here, we describe a self-contained circuit that controls glycosphingolipid reprogramming and neural differentiation. We find that globo-series glycosphingolipids repress the epigenetic regulator of neuronal gene expression AUTS2. AUTS2 in turn binds and activates the promoter of the first and rate-limiting ganglioside-producing enzyme GM3 synthase, thus fostering the synthesis of gangliosides. By this mechanism, the globo-AUTS2 axis controls glycosphingolipid reprogramming and neural gene expression during neural differentiation, which involves this circuit in neurodevelopment and its defects in neuropathology.


Assuntos
Diferenciação Celular/fisiologia , Reprogramação Celular/fisiologia , Glicoesfingolipídeos/metabolismo , Neurogênese/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Reprogramação Celular/efeitos dos fármacos , Proteínas do Citoesqueleto , Epigenômica , Gangliosídeos/metabolismo , Expressão Gênica , Inativação Gênica , Glicoesfingolipídeos/farmacologia , Células HeLa , Histonas/metabolismo , Humanos , Transtornos do Neurodesenvolvimento , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Neurônios/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Proteínas/genética , Proteínas/metabolismo , Sialiltransferases/genética , Sialiltransferases/metabolismo , Fatores de Transcrição
3.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35805964

RESUMO

The development of midbrain dopaminergic (DA) neurons requires a fine temporal and spatial regulation of a very specific gene expression program. Here, we report that during mouse brain development, the microRNA (miR-) 204/211 is present at a high level in a subset of DA precursors expressing the transcription factor Lmx1a, an early determinant for DA-commitment, but not in more mature neurons expressing Th or Pitx3. By combining different in vitro model systems of DA differentiation, we show that the levels of Lmx1a influence the expression of miR-204/211. Using published transcriptomic data, we found a significant enrichment of miR-204/211 target genes in midbrain dopaminergic neurons where Lmx1a was selectively deleted at embryonic stages. We further demonstrated that miR-204/211 controls the timing of the DA differentiation by directly downregulating the expression of Nurr1, a late DA differentiation master gene. Thus, our data indicate the Lmx1a-miR-204/211-Nurr1 axis as a key component in the cascade of events that ultimately lead to mature midbrain dopaminergic neurons differentiation and point to miR-204/211 as the molecular switch regulating the timing of Nurr1 expression.


Assuntos
Neurônios Dopaminérgicos , Proteínas com Homeodomínio LIM , MicroRNAs , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares , Animais , Diferenciação Celular/fisiologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Mesencéfalo/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Int J Mol Sci ; 21(11)2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503161

RESUMO

The relatively few dopaminergic neurons in the mammalian brain are mostly located in the midbrain and regulate many important neural functions, including motor integration, cognition, emotive behaviors and reward. Therefore, alteration of their function or degeneration leads to severe neurological and neuropsychiatric diseases. Unraveling the mechanisms of midbrain dopaminergic (mDA) phenotype induction and maturation and elucidating the role of the gene network involved in the development and maintenance of these neurons is of pivotal importance to rescue or substitute these cells in order to restore dopaminergic functions. Recently, in addition to morphogens and transcription factors, microRNAs have been identified as critical players to confer mDA identity. The elucidation of the gene network involved in mDA neuron development and function will be crucial to identify early changes of mDA neurons that occur in pre-symptomatic pathological conditions, such as Parkinson's disease. In addition, it can help to identify targets for new therapies and for cell reprogramming into mDA neurons. In this essay, we review the cascade of transcriptional and posttranscriptional regulation that confers mDA identity and regulates their functions. Additionally, we highlight certain mechanisms that offer important clues to unveil molecular pathogenesis of mDA neuron dysfunction and potential pharmacological targets for the treatment of mDA neuron dysfunction.


Assuntos
Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Doenças Neurodegenerativas/metabolismo , Animais , Encéfalo/metabolismo , Diferenciação Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Mesencéfalo/metabolismo , Mesencéfalo/patologia , MicroRNAs/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Neurogênese/genética , Doença de Parkinson/patologia , Fenótipo , Medicina Regenerativa , Fatores de Transcrição/metabolismo
5.
Int J Mol Sci ; 21(1)2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31948106

RESUMO

The selective elimination of dysfunctional mitochondria through mitophagy is crucial for preserving mitochondrial quality and cellular homeostasis. The most described mitophagy pathway is regulated by a positive ubiquitylation feedback loop in which the PINK1 (PTEN induced kinase 1) kinase phosphorylates both ubiquitin and the E3 ubiquitin ligase PRKN (Parkin RBR E3 ubiquitin ligase), also known as PARKIN. This event recruits PRKN to the mitochondria, thus amplifying ubiquitylation signal. Here we report that miR-218 targets PRKN and negatively regulates PINK1/PRKN-mediated mitophagy. Overexpression of miR-218 reduces PRKN mRNA levels, thus also reducing protein content and deregulating the E3 ubiquitin ligase action. In fact, following miR-218 overexpression, mitochondria result less ubiquitylated and the autophagy machinery fails to proceed with correct mitochondrial clearance. Since mitophagy defects are associated with various human diseases, these results qualify miR-218 as a promising therapeutic target for human diseases.


Assuntos
MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Mitofagia/genética , Ubiquitina-Proteína Ligases/metabolismo , Autofagossomos/metabolismo , Células HEK293 , Humanos , MicroRNAs/genética , Mitocôndrias/genética , Ubiquitina-Proteína Ligases/genética
6.
Brain ; 141(2): 505-520, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29281030

RESUMO

Nigro-striatal dopamine transmission is central to a wide range of neuronal functions, including skill learning, which is disrupted in several pathologies such as Parkinson's disease. The synaptic plasticity mechanisms, by which initial motor learning is stored for long time periods in striatal neurons, to then be gradually optimized upon subsequent training, remain unexplored. Addressing this issue is crucial to identify the synaptic and molecular mechanisms involved in striatal-dependent learning impairment in Parkinson's disease. In this study, we took advantage of interindividual differences between outbred rodents in reaching plateau performance in the rotarod incremental motor learning protocol, to study striatal synaptic plasticity ex vivo. We then assessed how this process is modulated by dopamine receptors and the dopamine active transporter, and whether it is impaired by overexpression of human α-synuclein in the mesencephalon; the latter is a progressive animal model of Parkinson's disease. We found that the initial acquisition of motor learning induced a dopamine active transporter and D1 receptors mediated long-term potentiation, under a protocol of long-term depression in striatal medium spiny neurons. This effect disappeared in animals reaching performance plateau. Overexpression of human α-synuclein reduced striatal dopamine active transporter levels, impaired motor learning, and prevented the learning-induced long-term potentiation, before the appearance of dopamine neuronal loss. Our findings provide evidence of a reorganization of cellular plasticity within the dorsolateral striatum that is mediated by dopamine receptors and dopamine active transporter during the acquisition of a skill. This newly identified mechanism of cellular memory is a form of metaplasticity that is disrupted in the early stage of synucleinopathies, such as Parkinson's disease, and that might be relevant for other striatal pathologies, such as drug abuse.


Assuntos
Corpo Estriado/citologia , Aprendizagem/fisiologia , Atividade Motora/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Animais , Benzazepinas/farmacologia , Antagonistas de Dopamina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Aprendizagem/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Destreza Motora/efeitos dos fármacos , Piperazinas/farmacologia , Tempo de Reação/fisiologia , Sinapsinas/genética , Sinapsinas/metabolismo , Sinaptofisina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/farmacologia
7.
J Neurochem ; 141(5): 647-661, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28122114

RESUMO

Precise control of dendritic spine density and synapse formation is critical for normal and pathological brain functions. Therefore, signaling pathways influencing dendrite outgrowth and remodeling remain a subject of extensive investigations. Here, we report that prolonged activation of the serotonin 5-HT7 receptor (5-HT7R) with selective agonist LP-211 promotes formation of dendritic spines and facilitates synaptogenesis in postnatal cortical and striatal neurons. Critical role of 5-HT7R in neuronal morphogenesis was confirmed by analysis of neurons isolated from 5-HT7R-deficient mice and by pharmacological inactivation of the receptor. Acute activation of 5-HT7R results in pronounced neurite elongation in postnatal striatal and cortical neurons, thus extending previous data on the morphogenic role of 5-HT7R in embryonic and hippocampal neurons. We also observed decreased number of spines in neurons with either genetically (i.e. 5-HT7R-knock-out) or pharmacologically (i.e. antagonist treatment) blocked 5-HT7R, suggesting that constitutive 5-HT7R activity is critically involved in the spinogenesis. Moreover, cyclin-dependent kinase 5 and small GTPase Cdc42 were identified as important downstream effectors mediating morphogenic effects of 5-HT7R in neurons. Altogether, our data suggest that the 5-HT7R-mediated structural reorganization during the postnatal development might have a crucial role for the development and plasticity of forebrain areas such as cortex and striatum, and thereby can be implicated in regulation of the higher cognitive functions. Read the Editorial Highlight for this article on page 644.


Assuntos
Córtex Cerebral/citologia , Corpo Estriado/citologia , Espinhas Dendríticas/metabolismo , Neurogênese/genética , Neurônios/citologia , Receptores de Serotonina/metabolismo , Sinapses/genética , Animais , Animais Recém-Nascidos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Células Cultivadas , Espinhas Dendríticas/efeitos dos fármacos , Diterpenos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Receptores de Serotonina/genética , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Sinapses/efeitos dos fármacos , Fatores de Tempo
8.
Proc Natl Acad Sci U S A ; 109(5): E210-7, 2012 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-22232659

RESUMO

Secondary active transporters use electrochemical gradients provided by primary ion pumps to translocate metabolites or drugs "uphill" across membranes. Here we report the ion-coupling mechanism of cystinosin, an unusual eukaryotic, proton-driven transporter distantly related to the proton pump bacteriorhodopsin. In humans, cystinosin exports the proteolysis-derived dimeric amino acid cystine from lysosomes and is impaired in cystinosis. Using voltage-dependence analysis of steady-state and transient currents elicited by cystine and neutralization-scanning mutagenesis of conserved protonatable residues, we show that cystine binding is coupled to protonation of a clinically relevant aspartate buried in the membrane. Deuterium isotope substitution experiments are consistent with an access of this aspartate from the lysosomal lumen through a deep proton channel. This aspartate lies in one of the two PQ-loop motifs shared by cystinosin with a set of eukaryotic membrane proteins of unknown function and is conserved in about half of them, thus suggesting that other PQ-loop proteins may translocate protons.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Lisossomos/metabolismo , Sequência de Aminoácidos , Sistemas de Transporte de Aminoácidos Neutros/química , Sistemas de Transporte de Aminoácidos Neutros/genética , Animais , Sítios de Ligação , Humanos , Dados de Sequência Molecular , Mutagênese , Prótons , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
9.
FASEB J ; 27(3): 865-70, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23230282

RESUMO

The brain is the most cholesterol-enriched tissue in the body. During brain development, desmosterol, an immediate precursor of cholesterol, transiently accumulates up to 30% of total brain sterols. This massive desmosterol deposition appears to be present in all mammalian species reported so far, including humans, but how it is achieved is not well understood. Here, we propose that desmosterol accumulation in the developing brain may be primarily caused by post-transcriptional repression of 3ß-hydroxysterol 24-reductase (DHCR24) by progesterone. Furthermore, distinct properties of desmosterol may serve to increase the membrane active pool of sterols in the brain: desmosterol cannot be hydroxylated to generate 24S-hydroxycholesterol, a brain derived secretory sterol, desmosterol has a reduced propensity to be esterified as compared to cholesterol, and desmosterol may activate LXR to stimulate astrocyte sterol secretion. This regulated accumulation of desmosterol by progesterone-induced suppression of DHCR24 may facilitate the rapid enrichment and distribution of membrane sterols in the developing brain.


Assuntos
Química Encefálica/fisiologia , Encéfalo/crescimento & desenvolvimento , Desmosterol/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Membrana Celular/metabolismo , Receptores X do Fígado , Camundongos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/metabolismo , Receptores Nucleares Órfãos/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/biossíntese , Progesterona/metabolismo
10.
J Neurochem ; 124(2): 159-67, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23134340

RESUMO

Research on stem cells has developed as one of the most promising areas of neurobiology. In the beginning of the 1990s, neurogenesis in the adult brain was indisputably accepted, eliciting great research efforts. Neural stem cells in the adult mammalian brain are located in the 'neurogenic' areas of the subventricular and subgranular zones. Nevertheless, many reports indicate that they subsist in other regions of the adult brain. Adult neural stem cells have arisen considerable interest as these studies can be useful to develop new methods to replace damaged neurons and treat severe neurological diseases such as neurodegeneration, stroke or spinal cord lesions. In particular, a promising field is aimed at stimulating or trigger a self-repair system in the diseased brain driven by its own stem cell population. Here, we will revise the latest findings on the characterization of active and quiescent adult neural stem cells in the main regions of neurogenesis and the factors necessary to maintain their active and resting states, stimulate migration and homing in diseased areas, hoping to outline the emerging knowledge for the promotion of regeneration in the brain based on endogenous stem cells.


Assuntos
Células-Tronco Adultas/fisiologia , Encefalopatias/patologia , Encefalopatias/terapia , Células-Tronco Neurais/fisiologia , Células-Tronco Adultas/patologia , Animais , Encefalopatias/fisiopatologia , Humanos , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Degeneração Neural/terapia , Regeneração Nervosa/fisiologia , Células-Tronco Neurais/patologia
11.
Front Cell Neurosci ; 17: 1328269, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249528

RESUMO

Over the last few decades, emerging evidence suggests that non-coding RNAs (ncRNAs) including long-non-coding RNA (lncRNA), microRNA (miRNA) and circular-RNA (circRNA) contribute to the molecular events underlying progressive neuronal degeneration, and a plethora of ncRNAs have been identified significantly misregulated in many neurodegenerative diseases, including Parkinson's disease and synucleinopathy. Although a direct link between neuropathology and causative candidates has not been clearly established in many cases, the contribution of ncRNAs to the molecular processes leading to cellular dysfunction observed in neurodegenerative diseases has been addressed, suggesting that they may play a role in the pathophysiology of these diseases. Aim of the present Review is to overview and discuss recent literature focused on the role of RNA-based mechanisms involved in different aspects of neuronal pathology in Parkinson's disease and synucleinopathy models.

12.
Elife ; 122023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37862092

RESUMO

The assembly of the mammalian brain is orchestrated by temporally coordinated waves of gene expression. Post-transcriptional regulation by microRNAs (miRNAs) is a key aspect of this program. Indeed, deletion of neuron-enriched miRNAs induces strong developmental phenotypes, and miRNA levels are altered in patients with neurodevelopmental disorders. However, the mechanisms used by miRNAs to instruct brain development remain largely unexplored. Here, we identified miR-218 as a critical regulator of hippocampal assembly. MiR-218 is highly expressed in the hippocampus and enriched in both excitatory principal neurons (PNs) and GABAergic inhibitory interneurons (INs). Early life inhibition of miR-218 results in an adult brain with a predisposition to seizures. Changes in gene expression in the absence of miR-218 suggest that network assembly is impaired. Indeed, we find that miR-218 inhibition results in the disruption of early depolarizing GABAergic signaling, structural defects in dendritic spines, and altered intrinsic membrane excitability. Conditional knockout of Mir218-2 in INs, but not PNs, is sufficient to recapitulate long-term instability. Finally, de-repressing Kif21b and Syt13, two miR-218 targets, phenocopies the effects on early synchronous network activity induced by miR-218 inhibition. Taken together, the data suggest that miR-218 orchestrates formative events in PNs and INs to produce stable networks.


Assuntos
MicroRNAs , Animais , Adulto , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neurônios/metabolismo , Hipocampo/metabolismo , Interneurônios/metabolismo , Encéfalo/metabolismo , Mamíferos/genética
13.
Exp Cell Res ; 317(4): 464-73, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21093432

RESUMO

Krüppel-like factor 7 (KLF7) belongs to the large family of KLF transcription factors, which comprises at least 17 members. Within this family, KLF7 is unique since its expression is strictly restricted within the nervous system during development. We have previously shown that KLF7 is required for neuronal morphogenesis and axon guidance in selected regions of the nervous system, including hippocampus, olfactory bulbs and cortex, as well as in neuronal cell cultures. In the present work, we have furthered our analysis of the role of KLF7 in central nervous system development. By gene expression analysis during brain embryogenesis, we found significant alterations in dopaminergic neurons in Klf7 null mice. In particular, the tyrosine hydroxylase (TH) and dopamine transporter (Dat) transcripts are strongly decreased in the olfactory bulbs and ventral midbrain at birth, compared to wild-type littermates. Interestingly, Klf7-mutant mice show a dramatic reduction of TH-positive neurons in the olfactory bulbs, but no change in GABAergic or midbrain dopaminergic neurons. These observations raise the possibility that a lack of a KLF family member affects dopaminergic neuron development.


Assuntos
Dopamina , Desenvolvimento Embrionário , Fatores de Transcrição Kruppel-Like/fisiologia , Neurônios/citologia , Bulbo Olfatório/crescimento & desenvolvimento , Animais , Sistema Nervoso Central/crescimento & desenvolvimento , Proteínas da Membrana Plasmática de Transporte de Dopamina/biossíntese , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Knockout , Bulbo Olfatório/citologia , Fatores de Transcrição/fisiologia , Tirosina 3-Mono-Oxigenase/biossíntese , Tirosina 3-Mono-Oxigenase/genética
14.
BMC Mol Cell Biol ; 23(1): 13, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35255831

RESUMO

BACKGROUND: The nucleolus is a subnuclear, non-membrane bound domain that is the hub of ribosome biogenesis and a critical regulator of cell homeostasis. Rapid growth and division of cells in tumors are correlated with intensive nucleolar metabolism as a response to oncogenic factors overexpression. Several members of the Epidermal Growth Factor Receptor (EGFR) family, have been identified in the nucleus and nucleolus of many cancer cells, but their function in these compartments remains unexplored. RESULTS: We focused our research on the nucleolar function that a specific member of EGFR family, the ErbB3 receptor, plays in glioblastoma, a tumor without effective therapies. Here, Neuregulin 1 mediated proliferative stimuli, promotes ErbB3 relocalization from the nucleolus to the cytoplasm and increases pre-rRNA synthesis. Instead ErbB3 silencing or nucleolar stress reduce cell proliferation and affect cell cycle progression. CONCLUSIONS: These data point to the existence of an ErbB3-mediated non canonical pathway that glioblastoma cells use to control ribosomes synthesis and cell proliferation. These results highlight the potential role for the nucleolar ErbB3 receptor, as a new target in glioblastoma.


Assuntos
Glioblastoma , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Proliferação de Células , Glioblastoma/metabolismo , Humanos , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo , Transcrição Gênica
15.
Nat Commun ; 12(1): 3495, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108486

RESUMO

Lysosomal storage disorders characterized by altered metabolism of heparan sulfate, including Mucopolysaccharidosis (MPS) III and MPS-II, exhibit lysosomal dysfunctions leading to neurodegeneration and dementia in children. In lysosomal storage disorders, dementia is preceded by severe and therapy-resistant autistic-like symptoms of unknown cause. Using mouse and cellular models of MPS-IIIA, we discovered that autistic-like behaviours are due to increased proliferation of mesencephalic dopamine neurons originating during embryogenesis, which is not due to lysosomal dysfunction, but to altered HS function. Hyperdopaminergia and autistic-like behaviours are corrected by the dopamine D1-like receptor antagonist SCH-23390, providing a potential alternative strategy to the D2-like antagonist haloperidol that has only minimal therapeutic effects in MPS-IIIA. These findings identify embryonic dopaminergic neurodevelopmental defects due to altered function of HS leading to autistic-like behaviours in MPS-II and MPS-IIIA and support evidence showing that altered HS-related gene function is causative of autism.


Assuntos
Transtorno do Espectro Autista/metabolismo , Dopamina/metabolismo , Heparitina Sulfato/metabolismo , Doenças por Armazenamento dos Lisossomos/metabolismo , Animais , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/patologia , Benzazepinas/uso terapêutico , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Antagonistas de Dopamina/uso terapêutico , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Heparitina Sulfato/farmacologia , Doenças por Armazenamento dos Lisossomos/tratamento farmacológico , Doenças por Armazenamento dos Lisossomos/patologia , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/embriologia , Mesencéfalo/patologia , Camundongos , Mucopolissacaridose III/tratamento farmacológico , Mucopolissacaridose III/metabolismo , Mucopolissacaridose III/patologia , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D1/metabolismo
16.
17.
J Neurosci ; 27(23): 6273-81, 2007 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-17554001

RESUMO

The mechanisms that specify the vesicular phenotype of inhibitory interneurons in vertebrates are poorly understood because the two main inhibitory transmitters, glycine and GABA, share the same vesicular inhibitory amino acid transporter (VIAAT) and are both present in neurons during postnatal development. We have expressed VIAAT and the plasmalemmal transporters for glycine and GABA in a neuroendocrine cell line and measured the quantal release of glycine and GABA using a novel double-sniffer patch-clamp technique. We found that glycine is released from vesicles when VIAAT is coexpressed with either the neuronal transporter GlyT2 or the glial transporter GlyT1. However, GlyT2 was more effective than GlyT1, probably because GlyT2 is unable to operate in the reverse mode, which gives it an advantage in maintaining the high cytosolic glycine concentration required for efficient vesicular loading by VIAAT. The vesicular inhibitory phenotype was gradually altered from glycinergic to GABAergic through mixed events when GABA is introduced into the secretory cell and competes for uptake by VIAAT. Interestingly, the VIAAT ortholog from Caenorhabditis elegans (UNC-47), a species lacking glycine transmission, also supports glycine exocytosis in the presence of GlyT2, and a point mutation of UNC-47 that abolishes GABA transmission in the worm confers glycine specificity. Together, these results suggest that an increased cytosolic availability of glycine in VIAAT-containing terminals was crucial for the emergence of glycinergic transmission in vertebrates.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Glicina/biossíntese , Glicina/metabolismo , Fenótipo , Vesículas Sinápticas/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/biossíntese , Animais , Caenorhabditis elegans , Linhagem Celular , Glicina/genética , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Humanos , Ratos , Vesículas Sinápticas/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética
18.
BMC Cell Biol ; 9: 32, 2008 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-18559082

RESUMO

BACKGROUND: Inside the cell, the HIV Tat protein is mainly found in the nucleus and nucleolus. The nucleolus, the site of ribosome biogenesis, is a highly organized, non-membrane-bound sub-compartment where proteins with a high affinity for nucleolar components are found. While it is well known that Tat accumulates in the nucleolus via a specific nucleolar targeting sequence, its function in this compartment it still unknown. RESULTS: To clarify the significance of the Tat nucleolar localization, we induced the expression of the protein during oogenesis in Drosophila melanogaster strain transgenic for HIV-tat gene. Here we show that Tat localizes in the nucleoli of Drosophila oocyte nurse cells, where it specifically co-localizes with fibrillarin. Tat expression is accompanied by a significant decrease of cytoplasmic ribosomes, which is apparently related to an impairment of ribosomal rRNA precursor processing. Such an event is accounted for by the interaction of Tat with fibrillarin and U3 snoRNA, which are both required for pre-rRNA maturation. CONCLUSION: Our data contribute to understanding the function of Tat in the nucleolus, where ribosomal RNA synthesis and cell cycle control take place. The impairment of nucleolar pre-rRNA maturation through the interaction of Tat with fibrillarin-U3snoRNA complex suggests a process by which the virus modulates host response, thus contributing to apoptosis and protein shut-off in HIV-uninfected cells.


Assuntos
HIV-1/fisiologia , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/biossíntese , Produtos do Gene tat do Vírus da Imunodeficiência Humana/fisiologia , Animais , Animais Geneticamente Modificados , Nucléolo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Drosophila melanogaster/genética , Feminino , Humanos , RNA Nucleolar Pequeno/metabolismo , Ribossomos/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
19.
Psychiatry Res ; 261: 508-516, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29395873

RESUMO

Spatial memory deficits are a common hallmark of psychiatric conditions, possibly due to a genetic predisposition. Thus, unravelling the relationship between genes and memory might suggest novel therapeutic targets and pathogenetic pathways. Genetic deletions are known to lead to memory deficits (post-deletion "forgetfulness" genes, PDF), or, in few instances to improve spatial memory (post-deletion "hypermnesic" genes, PDH). To assess this topic, we performed a meta-analytic approach on memory behavior in knock-out mice. We screened 300 studies from PubMed and retrieved 87 genes tested for possible effects on spatial memory. This database was crossed with the Allen Brain Atlas (brain distribution) and the Enrichr (gene function) databases. The results show that PDF genes have higher expression level in several ventral brain structures, particularly the encephalic trunk and in the hypothalamus. Moreover, part of these genes are implicated in synaptic functions. Conversely, the PDH genes are associated to G-protein coupled receptors downstream signalling. Some candidate drugs were also found to interfere with some of the PDH genes, further suggesting that this approach might help in identifying drugs to improve memory performance in psychiatric conditions.


Assuntos
Cognição/fisiologia , Transtornos da Memória/genética , Memória Espacial/fisiologia , Animais , Bases de Dados Genéticas , Feminino , Estudos de Associação Genética , Masculino , Transtornos da Memória/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
20.
Behav Brain Res ; 336: 256-260, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28899819

RESUMO

Dendritic spines, small protrusions emerging from the dendrites of most excitatory synapses in the mammalian brain, are highly dynamic structures and their shape and number is continuously modulated by memory formation and other adaptive changes of the brain. In this study, using a behavioral paradigm of motor learning, we applied the non-linear analysis of dendritic spines to study spine complexity along dendrites of cortical and subcortical neural systems, such as the basal ganglia, that sustain important motor learning processes. We show that, after learning, the spine organization has greater complexity, as indexed by the maximum Lyapunov exponent (LyE). The positive value of the exponent demonstrates that the system is chaotic, while recurrence plots show that the system is not simply composed by random noise, but displays quasi-periodic behavior. The increase in the maximum LyE and in the system entropy after learning was confirmed by the modification of the reconstructed trajectories in phase-space. Our results suggest that the remodeling of spines, as a result of a chaotic and non-random dynamical process along dendrites, may be a general feature associated with the structural plasticity underlying processes such as long-term memory maintenance. Furthermore, this work indicates that the non-linear method is a very useful tool to allow the detection of subtle stimulus-induced changes in dendritic spine dynamics, giving a key contribution to the study of the relationship between structure and function of spines.


Assuntos
Espinhas Dendríticas/fisiologia , Aprendizagem/fisiologia , Animais , Encéfalo/fisiologia , Dendritos/fisiologia , Masculino , Memória de Longo Prazo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA