RESUMO
BACKGROUND: Lysine-specific histone demethylase 1 (KDM1A/LSD1) regulates multiple cellular functions, including cellular proliferation, differentiation, and DNA repair. KDM1A is overexpressed in squamous cell carcinoma of the skin and inhibition of KDM1A can suppress cutaneous carcinogenesis. Despite the role of KDM1A in skin and DNA repair, the effect of KDM1A inhibition on cellular ultraviolet (UV) response has not been studied. METHODS: The ability of KDM1A inhibitor bizine to modify cell death after UVA and UVB exposure was tested in normal human keratinocytes and melanocytes, HaCaT, and FaDu cell lines. KDM1A was also downregulated using shRNA and inhibited by phenelzine in HaCaT and FaDu cells to confirm the role of KDM1A in UVA response. In addition, cellular reactive oxygen species (ROS) changes were assessed by a lipid-soluble fluorescent indicator of lipid oxidation, and ROS-related gene regulation using qPCR. During photodynamic therapy (PDT) studies HaCaT and FaDu cells were treated with aminolaevulinic acid (5-ALA) or HPPH (2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a) sodium and irradiated with 0-8 J/cm2 red LED light. RESULTS: KDM1A inhibition sensitized cells to UVA radiation-induced cell death but not to UVB. KDM1A inhibition increased ROS generation as detected by increased lipid peroxidation and the upregulation of ROS-responsive genes. The effectiveness of both ALA and HPPH PDT significantly improved in vitro in HaCaT and FaDu cells after KDM1A inhibition. CONCLUSION: KDM1A is a regulator of cellular UV response and KDM1A inhibition can improve PDT efficacy.
Assuntos
Histona Desmetilases , Fotoquimioterapia , Pele , Humanos , Ácido Aminolevulínico/farmacologia , Histona Desmetilases/metabolismo , Histona Desmetilases/farmacologia , Queratinócitos/metabolismo , Lipídeos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Pele/metabolismo , Raios Ultravioleta/efeitos adversosRESUMO
BACKGROUND AND OBJECTIVES: Intraoperative photodynamic therapy (IO-PDT) is typically administered by a handheld light source. This can result in uncontrolled distribution of light irradiance that impacts tissue and tumor response to photodynamic therapy. The objective of this work was to characterize a novel optical surface applicator (OSA) designed to administer controlled light irradiance in IO-PDT. STUDY DESIGN/MATERIALS AND METHODS: An OSA was constructed from a flexible silicone mesh applicator with multiple cylindrically diffusing optical fibers (CDF) placed into channels of the silicone. Light irradiance distribution, at 665 nm, was evaluated on the OSA surface and after passage through solid tissue-mimicking optical phantoms by measurements from a multi-channel dosimetry system. As a proof of concept, the light administration of the OSA was tested in a pilot study by conducting a feasibility and performance test with 665-nm laser light to activate 2-(1'-hexyloxyethyl) pyropheophorbide-a (HPPH) in the thoracic cavity of adult swine. RESULTS: At the OSA surface, the irradiance distribution was non-uniform, ranging from 128 to 346 mW/cm2 . However, in the tissue-mimicking phantoms, beam uniformity improved markedly, with irradiance ranges of 39-153, 33-87, and 12-28 mW/cm2 measured at phantom thicknesses of 3, 5, and 10 mm, respectively. The OSA safely delivered the prescribed light dose to the thoracic cavities of four swine. CONCLUSIONS: The OSA can provide predictable light irradiances for administering a well-defined and potentially effective therapeutic light in IO-PDT. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.
Assuntos
Lasers Semicondutores/uso terapêutico , Fotoquimioterapia/instrumentação , Cavidade Torácica/efeitos da radiação , Animais , Humanos , Imagens de Fantasmas , Silicones , SuínosRESUMO
BACKGROUND: Currently delivered light dose (J/cm2) is the principal parameter guiding interstitial photodynamic therapy (I-PDT) of refractory locally advanced cancer. The aim of this study was to investigate the impact of light dose rate (irradiance, mW/cm2) and associated heating on tumour response and cure. METHODS: Finite-element modeling was used to compute intratumoural irradiance and dose to guide Photofrin® I-PDT in locally advanced SCCVII in C3H mice and large VX2 neck tumours in New Zealand White rabbits. Light-induced tissue heating in mice was studied with real-time magnetic resonance thermometry. RESULTS: In the mouse model, cure rates of 70-90% were obtained with I-PDT using 8.4-245 mW/cm2 and ≥45 J/cm2 in 100% of the SCCVII tumour. Increasing irradiance was associated with increase in tissue heating. I-PDT with Photofrin® resulted in significantly (p < 0.05) higher cure rate compared to light delivery alone at same irradiance and light dose. Local control and/or cures of VX2 were obtained using I-PDT with 16.5-398 mW/cm2 and ≥45 J/cm2 in 100% of the tumour. CONCLUSION: In Photofrin®-mediated I-PDT, a selected range of irradiance prompts effective photoreaction with tissue heating in the treatment of locally advanced mouse tumour. These irradiances were translated for effective local control of large VX2 tumours.
Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Éter de Diematoporfirina/uso terapêutico , Neoplasias Experimentais/tratamento farmacológico , Fotoquimioterapia , Fármacos Fotossensibilizantes/uso terapêutico , Animais , Feminino , Temperatura Alta , Camundongos , Camundongos Endogâmicos C3H , Coelhos , TermometriaRESUMO
BACKGROUND AND OBJECTIVES: Image-based treatment planning can be used to compute the delivered light dose during interstitial photodynamic therapy (I-PDT) of locally advanced head and neck squamous cell carcinoma (LA-HNSCC). The objectives of this work were to evaluate the use of surface fiducial markers and flexible adhesive grids in guiding interstitial placement of laser fibers, and to quantify the impact of discrepancies in fiber location on the expected light dose volume histograms (DVHs). METHODS: Seven gel-based phantoms were made to mimic geometries of LA-HNSCC. Clinical flexible grids and fiducial markers were used to guide the insertion of optically transparent catheters, which are used to place cylindrical diffuser fibers within the phantoms. A computed tomography (CT) was used to image the markers and phantoms before and after catheter insertion and to determine the difference between the planned and actual location of the catheters. A finite element method was utilized to compute the light DVHs. Statistical analysis was employed to evaluate the accuracy of fiber placement and to investigate the correlation between the location of the fibers and the calculated DVHs. RESULTS: There was a statistically significant difference (P = 0.018) between all seven phantoms in terms of the mean displacement. There was also statistically significant correlation between DVHs and depth of insertion (P = 0.0027), but not with the lateral displacement (P = 0.3043). The maximum difference between actual and planned DVH was related to the number of fibers (P = 0.0025) and the treatment time. CONCLUSIONS: Surface markers and a flexible grid can be used to assist in the administration of a prescribed DVH within 15% of the target dose provided that the treatment fibers are placed within 1.3 cm of the planned depth of insertion in anatomies mimicking LA-HNSCC. The results suggest that the number of cylindrical diffuser fibers and treatment time can impact the delivered DVHs. Lasers Surg. Med. 49:599-608, 2017. © 2017 Wiley Periodicals, Inc.
Assuntos
Antineoplásicos/administração & dosagem , Carcinoma de Células Escamosas/tratamento farmacológico , Cateterismo/métodos , Marcadores Fiduciais , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Antineoplásicos/uso terapêutico , Carcinoma de Células Escamosas/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Humanos , Modelos Teóricos , Imagens de Fantasmas , Fármacos Fotossensibilizantes/uso terapêutico , Carcinoma de Células Escamosas de Cabeça e Pescoço , Tomografia Computadorizada por Raios XRESUMO
Effective therapy for advanced cancer often requires treatment of both primary tumors and systemic disease that may not be apparent at initial diagnosis. Numerous studies have shown that stimulation of the host immune system can result in the generation of anti-tumor immune responses capable of controlling metastatic tumor growth. Thus, there is interest in the development of combination therapies that both control primary tumor growth and stimulate anti-tumor immunity for control of metastatic disease and subsequent tumor growth. Photodynamic therapy (PDT) is an FDA-approved anticancer modality that has been shown to enhance anti-tumor immunity. Augmentation of anti-tumor immunity by PDT is regimen dependent, and PDT regimens that enhance anti-tumor immunity have been defined. Unfortunately, these regimens have limited ability to control primary tumor growth. Therefore, a two-step combination therapy was devised in which a tumor-controlling PDT regimen was combined with an immune-enhancing PDT regimen. To determine whether the two-step combination therapy enhanced anti-tumor immunity, resistance to subsequent tumor challenge and T cell activation and function was measured. The ability to control distant disease was also determined. The results showed that the novel combination therapy stimulated anti-tumor immunity while retaining the ability to inhibit primary tumor growth of both murine colon (Colon26-HA) and mammary (4T1) carcinomas. The combination therapy resulted in enhanced tumor-specific T cell activation and controlled metastatic tumor growth. These results suggest that PDT may be an effective adjuvant for therapies that fail to stimulate the host anti-tumor immune response.
Assuntos
Neoplasias do Colo/tratamento farmacológico , Neoplasias Mamárias Experimentais/tratamento farmacológico , Fotoquimioterapia/métodos , Animais , Antineoplásicos/farmacologia , Clorofila/análogos & derivados , Clorofila/farmacologia , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Éter de Diematoporfirina/farmacologia , Feminino , Ativação Linfocitária , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Fármacos Fotossensibilizantes/farmacologia , Distribuição Aleatória , Linfócitos T/imunologia , TransfecçãoRESUMO
BACKGROUND AND OBJECTIVES: Several clinical studies suggest that interstitial photodynamic therapy (I-PDT) may benefit patients with locally advanced head and neck cancer (LAHNC). For I-PDT, the therapeutic light is delivered through optical fibers inserted into the target tumor. The complex anatomy of the head and neck requires careful planning of fiber insertions. Often the fibers' location and tumor optical properties may vary from the original plan therefore pretreatment planning needs near real-time updating to account for any changes. The purpose of this work was to develop a finite element analysis (FEA) approach for near real-time simulation of light propagation in LAHNC. METHODS: Our previously developed FEA for modeling light propagation in skin tissue was modified to simulate light propagation from interstitial optical fibers. The modified model was validated by comparing the calculations with measurements in a phantom mimicking tumor optical properties. We investigated the impact of mesh element size and growth rate on the computation time, and defined optimal settings for the FEA. We demonstrated how the optimized FEA can be used for simulating light propagation in two cases of LAHNC amenable to I-PDT, as proof-of-concept. RESULTS: The modified FEA was in agreement with the measurements (P = 0.0271). The optimal maximum mesh size and growth rate were 0.005-0.02 m and 2-2.5 m/m, respectively. Using these settings the computation time for simulating light propagation in LAHNC was reduced from 25.9 to 3.7 minutes in one case, and 10.1 to 4 minutes in another case. There were minor differences (1.62%, 1.13%) between the radiant exposures calculated with either mesh in both cases. CONCLUSIONS: Our FEA approach can be used to model light propagation from diffused optical fibers in complex heterogeneous geometries representing LAHNC. There is a range of maximum element size (MES) and maximum element growth rate (MEGR) that can be used to minimize the computation time of the FEA to 4 minutes.
Assuntos
Análise de Elementos Finitos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Lasers de Corante/uso terapêutico , Modelos Teóricos , Fotoquimioterapia/métodos , Antineoplásicos/uso terapêutico , Humanos , Fibras Ópticas , Fotoquimioterapia/instrumentação , Fármacos Fotossensibilizantes/uso terapêuticoRESUMO
BACKGROUND: Topical photodynamic therapy (PDT) for selected nonmelanoma skin cancer using 5-aminolevulinic acid (ALA) or methyl aminolevulinate (MAL) has yielded high long-term complete response rates with very good cosmesis. Pain during light activation of the photosensitizer can be a serious adverse event. A 2-step irradiance protocol has previously been shown to minimize ALA-PDT pain. OBJECTIVE: To determine the irradiance-dependent pain threshold for MAL-PDT, to adapt the 2-step protocol to a light-emitting diode (LED) light source, and assess clinical response. METHODS: In this prospective study, 25 superficial basal cell carcinoma (sBCC) received an initial irradiance by laser at 40 or 50 mW/cm², or LED at 35 mW/cm² followed by an irradiance at 70 mW/cm² for a total of 75 J/cm². Pain levels were recorded for both irradiance steps. Efficacy was assessed at 6, 12, or 24 months. RESULTS: Pain was mild in the 40/70 mW/cm² laser cohort. Three instances of irradiance-limiting pain occurred at 50/70 mW/cm². Pain was minimal in the 35/70 mW/cm² LED cohort. Clinical response rates were 80% in the 50/70 mW/cm² laser cohort and 90% in the 35/70 mW/cm² LED cohort. CONCLUSION: Topical PDT can be effectively delivered to sBCC with minimal treatment-related pain by a 2-step irradiance protocol.
Assuntos
Carcinoma Basocelular/tratamento farmacológico , Fotoquimioterapia/métodos , Neoplasias Cutâneas/tratamento farmacológico , Adulto , Idoso , Ácido Aminolevulínico/análogos & derivados , Ácido Aminolevulínico/uso terapêutico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Manejo da Dor , Medição da Dor , Limiar da Dor , Fármacos Fotossensibilizantes/uso terapêutico , Estudos Prospectivos , Resultado do TratamentoRESUMO
Interstitial photodynamic therapy (I-PDT) is a promising therapy considered for patients with locally advanced cancer. In I-PDT, laser fibers are inserted into the tumor for effective illumination and activation of the photosensitizer in a large tumor. The intratumoral light irradiance and fluence are critical parameters that affect the response to I-PDT. In vivo animal models are required to conduct light dose studies, to define optimal irradiance and fluence for I-PDT. Here we describe two animal models with locally advanced tumors that can be used to evaluate the response to I-PDT. One model is the C3H mouse bearing large subcutaneous SCCVII carcinoma (400-600 mm3). Using this murine model, multiple light regimens with one or two optical fibers with cylindrical diffuser ends (cylindrical diffuser fiber, CDF) can be used to study tumor response to I-PDT. However, tissue heating may occur when 630 nm therapeutic light is delivered through CDF at an intensity ≥60 mW/cm and energy ≥100 J/cm. These thermal effects can impact tumor response while treating locally advanced mice tumors. Magnetic resonance imaging and thermometry can be used to study these thermal effects. A larger animal model, New Zealand White rabbit with VX2 carcinoma (~5000 mm3) implanted in either the sternomastoid (neck implantation model) or the biceps femoris muscle (thigh implantation model), can be used to study I-PDT with image-based pretreatment planning using computed tomography. In the VX2 model, the light delivery can include the use of multiple laser fibers to test light dosimetry and delivery that are relevant for clinical use of I-PDT.
Assuntos
Carcinoma , Segunda Neoplasia Primária , Fotoquimioterapia , Animais , Humanos , Camundongos , Camundongos Endogâmicos C3H , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , CoelhosRESUMO
Objective: Patients with inoperable extrabronchial or endobronchial tumors who are not candidates for curative radiotherapy have dire prognoses with no effective long-term treatment options. To reveal that our computer-optimized interstitial photodynamic therapy (I-PDT) is safe and potentially effective in the treatment of patients with inoperable extra or endobronchial malignancies inducing central airway obstructions. Methods: High-spatial resolution computer simulations were used to personalize the light dose rate and dose for each tumor. Endobronchial ultrasound with a transbronchial needle was used to place the optical fibers within the tumor according to an individualized plan. The primary and secondary end points were safety and overall survival, respectively. An exploratory end point evaluated changes in immune markers. Results: Eight patients received I-PDT with planning, and five of these received additional external beam PDT. Two additional patients received external beam PDT. The treatment was declared safe. Three of 10 patients are alive at 26.3, 12, and 8.3 months, respectively, after I-PDT. The treatments were able to deliver a prescribed light dose rate and dose to 87% to 100% and 18% to 92% of the tumor volumes, respectively. A marked increase in the proportion of monocytic myeloid-derived suppressor cells expressing programmed death-ligand 1 was measured in four of seven patients. Conclusions: Image-guided light dosimetry for I-PDT with linear endobronchial ultrasound transbronchial needle is safe and potentially beneficial in increasing overall survival of patients. I-PDT has a positive effect on the immune response including an increase in the proportion of programmed death-ligand 1-expressing monocytic myeloid-derived suppressor cells.
RESUMO
Intra-operative photodynamic therapy (IO-PDT) in combination with surgery for the treatment of non-small cell lung cancer and malignant pleural mesothelioma has shown promise in improving overall survival in patients. Here, we developed a PDT platform consisting of a ruthenium-based photosensitizer (TLD1433) activated by an optical surface applicator (OSA) for the management of residual disease. Human lung adenocarcinoma (A549) cell viability was assessed after treatment with TLD1433-mediated PDT illuminated with either 532- or 630-nm light with a micro-lens laser fiber. This TLD1433-mediated PDT induced an EC50 of 1.98 µM (J/cm2) and 4807 µM (J/cm2) for green and red light, respectively. Cells were then treated with 10 µM TLD1433 in a 96-well plate with the OSA using two 2-cm radial diffusers, each transmitted 532 nm light at 50 mW/cm for 278 s. Monte Carlo simulations of the surface light propagation from the OSA computed light fluence (J/cm2) and irradiance (mW/cm2) distribution. In regions where 100% loss in cell viability was measured, the simulations suggest that >20 J/cm2 of 532 nm was delivered. Our studies indicate that TLD1433-mediated PDT with the OSA and light simulations have the potential to become a platform for treatment planning for IO-PDT.
RESUMO
The objective of the present study was to develop a predictive model for Photofrin® -mediated interstitial photodynamic therapy (I-PDT) of locally advanced tumors. Our finite element method was used to simulate 630-nm intratumoral irradiance and fluence for C3H mice and New Zealand White rabbits bearing large squamous cell carcinomas. Animals were treated with light only or I-PDT using the same light settings. I-PDT was administered with Photofrin® at 5.0 or 6.6 mg kg-1 , 24 h drug-light interval. The simulated threshold fluence was fixed at 45 J cm-2 while the simulated threshold irradiance varied, intratumorally. No cures were obtained in the mice treated with a threshold irradiance of 5.4 mW cm-2 . However, 20-90% of the mice were cured when the threshold irradiances were ≥8.6 mW cm-2 . In the rabbits treated with I-PDT, 13 of the 14 VX2 tumors showed either local control or were cured when threshold irradiances were ≥15.3 mW cm-2 and fluence was 45 J cm-2 . No tumor growth delay was observed in VX2 treated with light only (n = 3). In the mouse studies, there was a high probability (92.7%) of predicting cure when the initial tumor volume was below the median (493.9 mm3 ) and I-PDT was administered with a threshold intratumoral irradiance ≥8.6 mW cm-2 .
Assuntos
Éter de Diematoporfirina/uso terapêutico , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Animais , Éter de Diematoporfirina/administração & dosagem , Relação Dose-Resposta à Radiação , Camundongos , Camundongos Endogâmicos C3H , Neoplasias/patologia , Fármacos Fotossensibilizantes/administração & dosagem , CoelhosRESUMO
In this report, we examined the antitumor activity of photodynamic therapy (PDT) in combination with 5,6-dimethylxanthenone-4-acetic acid (DMXAA), a vascular disrupting agent currently undergoing clinical evaluation. BALB/c mice bearing subcutaneous CT-26 colon carcinomas were treated with PDT using the second-generation chlorin-based sensitizer, 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (Photochlor) with or without DMXAA. Long-term (60-days) treatment outcome, induction of tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6), vascular damage (microvessel density, MVD) were evaluated as endpoints. In addition, treatment selectivity was evaluated using magnetic resonance imaging (MRI) and the foot response assay. A highly synergistic interaction was observed with the combination of low-dose DMXAA and PDT (48 J cm(-2) at 112 mW cm(-2)) resulting in approximately 60% long-term cures. The duration of the PDT session for this combination therapy protocol was only 7 min, while the duration of a monotherapy PDT session, selected to yield the equivalent cure rate, was 152 min. MRI showed markedly less peritumoral edema after DMXAA + short-duration PDT compared with long-duration PDT monotherapy. Similarly, DMXAA + PDT caused significantly less phototoxicity to normal mouse foot tissue than PDT alone. Increased induction of cytokines TNF-alpha and IL-6 (P < 0.001) was observed at 4 h followed by extensive vascular damage, demonstrated by a significant reduction in MVD at 24 h after combination treatment. In conclusion, Photochlor-sensitized PDT in combination with DMXAA exhibits superior efficacy and improved selectivity with clinically feasible illumination schemes. Clinical evaluation of this novel combination strategy is currently being planned.
Assuntos
Antineoplásicos/uso terapêutico , Clorofila/análogos & derivados , Neoplasias/irrigação sanguínea , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Xantonas/uso terapêutico , Animais , Linhagem Celular Tumoral , Clorofila/uso terapêutico , Combinação de Medicamentos , Interleucina-6/metabolismo , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Neoplasias/patologia , Fotoquimioterapia , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
PURPOSE: The rate of energy delivery is a principal factor determining the biological consequences of photodynamic therapy (PDT). In contrast to conventional high-irradiance treatments, recent preclinical and clinical studies have focused on low-irradiance schemes. The objective of this study was to investigate the relationship between irradiance, photosensitizer dose, and PDT dose with regard to treatment outcome and tumor oxygenation in a rat tumor model. EXPERIMENTAL DESIGN: Using the photosensitizer HPPH (2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide), a wide range of PDT doses that included clinically relevant photosensitizer concentrations was evaluated. Magnetic resonance imaging and oxygen tension measurements were done along with the Evans blue exclusion assay to assess vascular response, oxygenation status, and tumor necrosis. RESULTS: In contrast to high-incident laser power (150 mW), low-power regimens (7 mW) yielded effective tumor destruction. This was largely independent of PDT dose (drug-light product), with up to 30-fold differences in photosensitizer dose and 15-fold differences in drug-light product. For all drug-light products, the duration of light treatment positively influenced tumor response. Regimens using treatment times of 120 to 240 min showed marked reduction in signal intensity in T2-weighted magnetic resonance images at both low (0.1 mg/kg) and high (3 mg/kg) drug doses compared with short-duration (6-11 min) regimens. Significantly greater reductions in pO(2) were observed with extended exposures, which persisted after completion of treatment. CONCLUSIONS: These results confirm the benefit of prolonged light exposure, identify vascular response as a major contributor, and suggest that duration of light treatment (time) may be an important new treatment variable.
Assuntos
Clorofila/análogos & derivados , Neoplasias do Colo/tratamento farmacológico , Fotoquimioterapia , Fármacos Fotossensibilizantes/administração & dosagem , Animais , Hipóxia Celular , Clorofila/administração & dosagem , Clorofila/farmacocinética , Clorofila/farmacologia , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/metabolismo , Feminino , Luz , Oxigênio/análise , Fármacos Fotossensibilizantes/farmacocinética , Fármacos Fotossensibilizantes/farmacologia , Ratos , Ratos Endogâmicos F344 , Resultado do TratamentoRESUMO
Photodynamic therapy (PDT) is an office-based treatment for precancerous and early cancerous skin changes. PDT induces cell death through the production of reactive oxygen species (ROS). Cyclobutane pyrimidine dimers (CPDs) are the most important DNA changes responsible for ultraviolet (UV) carcinogenesis. Recently ROS induced by UVA were shown to generate CPDs via activating melanin. This raised the possibility that PDT induced ROS may also induce CPDs and mutagenesis in melanin containing cells. Previously the effect of PDT on CPDs in melanin containing cells has not been assessed. Our current work aimed to compare the generation of CPDs in melanin containing cells subjected to UVA treatment and porfimer sodium red light PDT. We used ELISA to detect CPDs. After UVA we found a dose dependent increase in CPDs in melanoma cells (B16-F10, MNT-1) with CPD levels peaking hours after discontinuation of UVA treatment. This indicated the generation of UVA induced dark-CPDs in the model. Nevertheless, PDT in biologically relevant doses was unable to induce CPDs. Our work provides evidence for the lack of CPD generation by PDT in melanin containing cells.
Assuntos
Éter de Diematoporfirina/farmacologia , Melaninas/metabolismo , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Dímeros de Pirimidina/biossíntese , Raios Ultravioleta/efeitos adversos , Dano ao DNA/fisiologia , Ensaio de Imunoadsorção Enzimática , Humanos , Melanócitos/efeitos dos fármacos , Melanoma/tratamento farmacológicoRESUMO
Recent advances in interventional pulmonology led to a significant expansion of the diagnostic and therapeutic role of endobronchial ultrasound. In this paper, we describe a new concept for using endobronchial ultrasound to guide interstitial photodynamic therapy (PDT). For this purpose, we conducted in vitro and in vivo experiments using a phantom and animal models, respectively. A new 0.5 mm optical fiber, with cylindrical diffuser end, was used to deliver the therapeutic light through the 21-gauge endobronchial ultrasound needle. The animal experiments were performed under real-time ultrasonography guidance in mice and rabbits' tumor models. Safe and effective fiber placements and tumor illumination was accomplished. In addition, computer simulation of light propagation suggests that locally advanced lung cancer tumor can be illuminated. This study demonstrates the potential feasibility of this new therapeutic modality approach, justifying further investigation in the treatment of locally advanced lung cancers.
RESUMO
Multiple clinical studies have shown that interstitial photodynamic therapy (I-PDT) is a promising modality in the treatment of locally-advanced cancerous tumors. However, the utilization of I-PDT has been limited to several centers. The objective of this focused review is to highlight the different approaches employed to administer I-PDT with photosensitizers that are either approved or in clinical studies for the treatment of prostate cancer, pancreatic cancer, head and neck cancer, and brain cancer. Our review suggests that I-PDT is a promising treatment in patients with large-volume or thick tumors. Image-based treatment planning and real-time dosimetry are required to optimize and further advance the utilization of I-PDT. In addition, pre- and post-imaging using computed tomography (CT) with contrast may be utilized to assess the response.
RESUMO
PURPOSE: To measure skin photosensitivity in cancer patients infused with the new second-generation photodynamic sensitizer Photochlor (2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a). A major disadvantage of using the clinically approved photosensitizer Photofrin is potentially prolonged and sometimes severe cutaneous phototoxicity. PATIENTS AND METHODS: Forty-eight patients enrolled in Phases 1 and 2 clinical trials underwent two or more exposures to four graded doses (44.4, 66.6, 88.8 or 133.2 J/cm2) of artificial solar-spectrum light (SSL) before and after administration of Photochlor at a dose of 2.5, 3, 4, 5 or 6 mg/m2 . RESULTS: The most severe skin response, experienced by only six of the subjects, was limited to erythema without edema and could only be elicited by exposure to the highest light dose. Conversely, eight subjects had no discernible reaction to SSL at any light dose. For nearly all the patients, the peak skin response was obtained when the interval between sensitizer injection and exposure to SSL was 1 day and, generally, their sensitivity to SSL decreased with increasing sensitizer-light interval. For example, a 2-day sensitizer-SSL interval resulted in less severe reactions than those obtained with the 1-day interval in 79% of the subjects, while 90% of the subjects exposed to SSL 3 days after Photochlor infusion had responses that were less severe than those obtained with either the 1- or 2-day sensitizer-SSL interval. CONCLUSIONS: Photochlor, at clinically effective antitumor doses, causes only mild skin photosensitivity that declines rapidly over a few days.
Assuntos
Éter de Diematoporfirina/efeitos adversos , Neoplasias/tratamento farmacológico , Fotoquimioterapia , Transtornos de Fotossensibilidade/induzido quimicamente , Fármacos Fotossensibilizantes/efeitos adversos , Éter de Diematoporfirina/uso terapêutico , Feminino , Humanos , Masculino , Fármacos Fotossensibilizantes/uso terapêutico , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Raios UltravioletaRESUMO
PURPOSE: Photodynamic therapy (PDT) is a clinically approved treatment for a variety of solid malignancies. 5,6-Dimethylxanthenone-4-acetic acid (DMXAA) is a potent vascular targeting agent that has been shown to be effective against a variety of experimental rodent tumors and xenografts and is currently undergoing clinical evaluation. We have previously reported that the activity of PDT against transplanted mouse tumors is selectively enhanced by DMXAA. In the present study, we investigated the in vivo tumor vascular responses to the two treatments given alone and in combination. EXPERIMENTAL DESIGN: Vascular responses to (i) four different PDT regimens using the photosensitizer 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH) at two different fluences (128 and 48 J/cm(2)) and fluence rates (112 and 14 mW/cm(2)), (ii) 5-aminolevulinic acid (ALA)-sensitized PDT (135 J/cm(2) at 75 mW/cm(2)), (iii) DMXAA at a high (30 mg/kg) and low dose (25 mg/kg), and (iv) the combination of HPPH-PDT (48 J/cm(2) at 112 mW/cm(2)) and low-dose DMXAA were studied in BALB/c mice bearing Colon-26 tumors. RESULTS: PDT-induced changes in vascular permeability, determined using noninvasive magnetic resonance imaging with a macromolecular contrast agent, were regimen dependent and did not predict tumor curability. However, a pattern of increasing (4 hours after treatment) and then decreasing (24 hours after) contrast agent concentrations in tumors, seen after high-dose DMXAA or the combination of PDT and low-dose DMXAA, was associated with long-term cure rates of >70%. This pattern was attributed to an initial increase in vessel permeability followed by substantial endothelial cell damage (CD31 immunohistochemistry) and loss of blood flow (fluorescein exclusion assay). Low dose-rate PDT, regardless of the delivered dose, increased the level of magnetic resonance contrast agent in peritumoral tissue, whereas treatment with either DMXAA alone, or PDT and DMXAA in combination resulted in a more selective tumor vascular response. CONCLUSIONS: The observed temporal and spatial differences in the response of tumor vessels to PDT and DMXAA treatments could provide valuable assistance in the optimization of scheduling when combining these therapies. The combination of PDT and DMXAA provides therapeutically synergistic and selective antitumor activity. Clinical evaluation of this combination is warranted.
Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Neoplasias Experimentais/tratamento farmacológico , Fotoquimioterapia , Xantonas/farmacologia , Ácido Aminolevulínico/administração & dosagem , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Clorofila/administração & dosagem , Clorofila/análogos & derivados , Terapia Combinada , Relação Dose-Resposta a Droga , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/patologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/análise , Resultado do Tratamento , Xantonas/uso terapêuticoRESUMO
Using the photosensitizer 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a, we have determined that photodynamic therapy (PDT) can be used to facilitate the delivery of macromolecular agents. PDT regimens that use low fluences and fluence rates were the most successful. This effect was demonstrated for fluorescent microspheres with diameters ranging from 0.1 to 2 microm. Such treatment given immediately before administration of Doxil, a liposomally encapsulated formulation of doxorubicin with an average diameter of 0.1 microm, significantly enhanced its accumulation in transplanted murine Colo 26 tumors. The combination of PDT and Doxil led to a highly significant potentiation in tumor control without concomitant enhancement of systemic or local toxicity. Interestingly, concentration-effect modeling suggested that the enhanced cure rate was greater than what was predicted based on the increase in intratumor Doxil concentration. In summary, we have developed a novel PDT treatment that enhances the delivery and efficacy of macromolecule-based cancer therapies such as Doxil.
Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Clorofila/análogos & derivados , Clorofila/farmacologia , Doxorrubicina/administração & dosagem , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Animais , Antibióticos Antineoplásicos/farmacocinética , Permeabilidade Capilar/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Terapia Combinada , Doxorrubicina/farmacocinética , Sistemas de Liberação de Medicamentos , Sinergismo Farmacológico , Feminino , Camundongos , Camundongos Endogâmicos BALB CRESUMO
DMXAA (5,6-dimethylxanthenone-4-acetic acid) is an antivascular agent that exerts its antitumor effect at least partly through the induction of tumor necrosis factor (TNF)-alpha. Photodynamic therapy (PDT), the activation of a photoreactive drug in tumor tissue with visible light, is used clinically to control solid malignancies. PDT has been shown previously to be potentiated, in mice, by the i.p. administration of recombinant human TNF-alpha. Here, we investigated the activity of DMXAA as a modifier of Photofrin-based PDT of implanted murine RIF-1 tumors. The DMXAA dose (20 mg.kg(-1)) used throughout this study had little effect on tumor growth. The combination of DMXAA and PDT led to a reduction in tumor volume and significant delays in regrowth, giving a PDT-dose modification factor of 2.81. This enhancement was found to be strongly schedule dependent. The most pronounced responses were achieved when DMXAA was administered 1-3 h before the local illumination of the tumors; less activity was observed at other intervals within +/-24 h of PDT-light delivery. Using a 2-h DMXAA-light interval, histological examination showed significantly reduced blood vessel counts (CD31 immunostaining) and marked necrosis (H&E) in the tumors given combination therapy compared with the tumors given either agent alone. Conversely, peritumoral tissue was still intact 24 h after the combined therapy. DMXAA did not augment the damage to normal mouse feet after low-dose PDT (1.5 mg.kg(-1) Photofrin); however, there was some enhancement of normal tissue phototoxicity when DMXAA was combined with high-dose PDT. The antitumor effect after DMXAA plus low-dose PDT (1.5 mg.kg(-1) Photofrin) appeared to be dependent on TNF-alpha because neutralizing antibodies to this cytokine reduced the tumor response to control levels. DMXAA by itself induced TNF-alpha in RIF-1 tumors whereas PDT did not. However, the addition of PDT after DMXAA resulted in decreases in TNF-alpha, suggesting that the enhanced antitumor activity of the combination therapy was not attributable simply to an increased induction of the cytokine by PDT over that from DMXAA alone. These observations suggest a promising new combination therapy with considerable therapeutic advantage.