Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Mol Cell ; 69(5): 723-725, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29499129

RESUMO

In this issue of Molecular Cell, Guo et al. (2018) and Kang et al. (2018) report structures of paused transcription complexes in which asynchronous translocation inhibits nucleotide addition, allowing for global rearrangements in RNA polymerase stabilized by RNA hairpin and NusA.


Assuntos
RNA Bacteriano , Transcrição Gênica , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli , Conformação de Ácido Nucleico , Fatores de Elongação da Transcrição
2.
Nucleic Acids Res ; 47(19): 10296-10312, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31495891

RESUMO

Oxazinomycin is a C-nucleoside antibiotic that is produced by Streptomyces hygroscopicus and closely resembles uridine. Here, we show that the oxazinomycin triphosphate is a good substrate for bacterial and eukaryotic RNA polymerases (RNAPs) and that a single incorporated oxazinomycin is rapidly extended by the next nucleotide. However, the incorporation of several successive oxazinomycins or a single oxazinomycin in a certain sequence context arrested a fraction of the transcribing RNAP. The addition of Gre RNA cleavage factors eliminated the transcriptional arrest at a single oxazinomycin and shortened the nascent RNAs arrested at the polythymidine sequences suggesting that the transcriptional arrest was caused by backtracking of RNAP along the DNA template. We further demonstrate that the ubiquitous C-nucleoside pseudouridine is also a good substrate for RNA polymerases in a triphosphorylated form but does not inhibit transcription of the polythymidine sequences. Our results collectively suggest that oxazinomycin functions as a Trojan horse substrate and its inhibitory effect is attributable to the oxygen atom in the position corresponding to carbon five of the uracil ring.


Assuntos
RNA Polimerases Dirigidas por DNA/química , RNA/química , Transcrição Gênica/efeitos dos fármacos , Uridina/análogos & derivados , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Oxigênio/química , Pseudomonas/química , RNA/genética , Clivagem do RNA/efeitos dos fármacos , Streptomyces/química , Especificidade por Substrato , Timidina/química , Timidina/genética , Transcrição Gênica/genética , Fatores de Elongação da Transcrição/genética , Uracila/química , Uridina/síntese química , Uridina/química , Uridina/farmacologia
3.
Proc Natl Acad Sci U S A ; 115(36): 8972-8977, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30127008

RESUMO

RNA polymerase I (Pol I) transcribes ribosomal DNA (rDNA) to produce the ribosomal RNA (rRNA) precursor, which accounts for up to 60% of the total transcriptional activity in growing cells. Pol I monitors rDNA integrity and influences cell survival, but little is known about how this enzyme processes UV-induced lesions. We report the electron cryomicroscopy structure of Pol I in an elongation complex containing a cyclobutane pyrimidine dimer (CPD) at a resolution of 3.6 Å. The structure shows that the lesion induces an early translocation intermediate exhibiting unique features. The bridge helix residue Arg1015 plays a major role in CPD-induced Pol I stalling, as confirmed by mutational analysis. These results, together with biochemical data presented here, reveal the molecular mechanism of Pol I stalling by CPD lesions, which is distinct from Pol II arrest by CPD lesions. Our findings open the avenue to unravel the molecular mechanisms underlying cell endurance to lesions on rDNA.


Assuntos
Dano ao DNA , DNA Fúngico/química , DNA Ribossômico/química , RNA Polimerase I/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Raios Ultravioleta , DNA Fúngico/metabolismo , DNA Ribossômico/metabolismo , RNA Polimerase I/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Annu Rev Microbiol ; 69: 49-69, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26132790

RESUMO

Bacteria lack subcellular compartments and harbor a single RNA polymerase that synthesizes both structural and protein-coding RNAs, which are cotranscriptionally processed by distinct pathways. Nascent rRNAs fold into elaborate secondary structures and associate with ribosomal proteins, whereas nascent mRNAs are translated by ribosomes. During elongation, nucleic acid signals and regulatory proteins modulate concurrent RNA-processing events, instruct RNA polymerase where to pause and terminate transcription, or act as roadblocks to the moving enzyme. Communications among complexes that carry out transcription, translation, repair, and other cellular processes ensure timely execution of the gene expression program and survival under conditions of stress. This network is maintained by auxiliary proteins that act as bridges between RNA polymerase, ribosome, and repair enzymes, blurring boundaries between separate information-processing steps and making assignments of unique regulatory functions meaningless. Understanding the regulation of transcript elongation thus requires genome-wide approaches, which confirm known and reveal new regulatory connections.


Assuntos
Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Elongação da Transcrição Genética , Bactérias/enzimologia , DNA/química , Reparo do DNA , Hibridização de Ácido Nucleico , Biossíntese de Proteínas , RNA/química
5.
Nucleic Acids Res ; 46(20): 10870-10887, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30256972

RESUMO

All cellular RNA polymerases (RNAP) occasionally backtrack along the template DNA as part of transcriptional proofreading and regulation. Here, we studied the mechanism of RNAP backtracking by one nucleotide using two complementary approaches that allowed us to precisely measure the occupancy and lifetime of the backtracked state. Our data show that the stability of the backtracked state is critically dependent on the closure of the RNAP active site by a mobile domain, the trigger loop (TL). The lifetime and occupancy of the backtracked state measurably decreased by substitutions of the TL residues that interact with the nucleoside triphosphate (NTP) substrate, whereas amino acid substitutions that stabilized the closed active site increased the lifetime and occupancy. These results suggest that the same conformer of the TL closes the active site during catalysis of nucleotide incorporation into the nascent RNA and backtracking by one nucleotide. In support of this hypothesis, we construct a model of the 1-nt backtracked complex with the closed active site and the backtracked nucleotide in the entry pore area known as the E-site. We further propose that 1-nt backtracking mimics the reversal of the NTP substrate loading into the RNAP active site during on-pathway elongation.


Assuntos
Domínio Catalítico , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Dobramento de Proteína , RNA/metabolismo , Elongação da Transcrição Genética , Catálise , Domínio Catalítico/genética , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Ligação Proteica , Estabilidade Proteica , RNA/química
6.
Mol Microbiol ; 109(4): 445-457, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29758107

RESUMO

Universally conserved NusG/Spt5 factors reduce RNA polymerase pausing and arrest. In a widely accepted model, these proteins bridge the RNA polymerase clamp and lobe domains across the DNA channel, inhibiting the clamp opening to promote pause-free RNA synthesis. However, recent structures of paused transcription elongation complexes show that the clamp does not open and suggest alternative mechanisms of antipausing. Among these mechanisms, direct contacts of NusG/Spt5 proteins with the nontemplate DNA in the transcription bubble have been proposed to prevent unproductive DNA conformations and thus inhibit arrest. We used Escherichia coli RfaH, whose interactions with DNA are best characterized, to test this idea. We report that RfaH stabilizes the upstream edge of the transcription bubble, favoring forward translocation, and protects the upstream duplex DNA from exonuclease cleavage. Modeling suggests that RfaH loops the nontemplate DNA around its surface and restricts the upstream DNA duplex mobility. Strikingly, we show that RfaH-induced DNA protection and antipausing activity can be mimicked by shortening the nontemplate strand in elongation complexes assembled on synthetic scaffolds. We propose that remodeling of the nontemplate DNA controls recruitment of regulatory factors and R-loop formation during transcription elongation across all life.


Assuntos
DNA Bacteriano/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Fatores de Alongamento de Peptídeos/metabolismo , RNA Bacteriano/biossíntese , Transativadores/metabolismo , Transcrição Gênica/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Conformação de Ácido Nucleico , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Fatores de Elongação da Transcrição/metabolismo
7.
Mol Cell ; 43(2): 253-62, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21777814

RESUMO

In all organisms, RNA polymerase (RNAP) relies on accessory factors to complete synthesis of long RNAs. These factors increase RNAP processivity by reducing pausing and termination, but their molecular mechanisms remain incompletely understood. We identify the ß gate loop as an RNAP element required for antipausing activity of a bacterial virulence factor RfaH, a member of the universally conserved NusG family. Interactions with the gate loop are necessary for suppression of pausing and termination by RfaH, but are dispensable for RfaH binding to RNAP mediated by the ß' clamp helices. We hypothesize that upon binding to the clamp helices and the gate loop RfaH bridges the gap across the DNA channel, stabilizing RNAP contacts with nucleic acid and disfavoring isomerization into a paused state. We show that contacts with the gate loop are also required for antipausing by NusG and propose that most NusG homologs use similar mechanisms to increase RNAP processivity.


Assuntos
Proteínas de Bactérias/química , RNA Polimerases Dirigidas por DNA/química , Proteínas de Escherichia coli/química , Fatores de Alongamento de Peptídeos/química , Transativadores/química , Fatores de Transcrição/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Óperon , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Conformação Proteica , Thermus thermophilus/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Proc Natl Acad Sci U S A ; 113(52): 14994-14999, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-27956639

RESUMO

Upon RNA polymerase (RNAP) binding to a promoter, the σ factor initiates DNA strand separation and captures the melted nontemplate DNA, whereas the core enzyme establishes interactions with the duplex DNA in front of the active site that stabilize initiation complexes and persist throughout elongation. Among many core RNAP elements that participate in these interactions, the ß' clamp domain plays the most prominent role. In this work, we investigate the role of the ß gate loop, a conserved and essential structural element that lies across the DNA channel from the clamp, in transcription regulation. The gate loop was proposed to control DNA loading during initiation and to interact with NusG-like proteins to lock RNAP in a closed, processive state during elongation. We show that the removal of the gate loop has large effects on promoter complexes, trapping an unstable intermediate in which the RNAP contacts with the nontemplate strand discriminator region and the downstream duplex DNA are not yet fully established. We find that although RNAP lacking the gate loop displays moderate defects in pausing, transcript cleavage, and termination, it is fully responsive to the transcription elongation factor NusG. Together with the structural data, our results support a model in which the gate loop, acting in concert with initiation or elongation factors, guides the nontemplate DNA in transcription complexes, thereby modulating their regulatory properties.


Assuntos
RNA Polimerases Dirigidas por DNA/química , Conformação de Ácido Nucleico , Fator sigma/química , DNA Bacteriano/química , Escherichia coli/química , Proteínas de Escherichia coli/química , Deleção de Genes , Oligonucleotídeos/genética , Fatores de Alongamento de Peptídeos/química , Regiões Promotoras Genéticas , Ligação Proteica , Conformação Proteica , Thermus/química , Transcrição Gênica
9.
Nature ; 457(7227): 332-5, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18946472

RESUMO

Structural studies of antibiotics not only provide a shortcut to medicine allowing for rational structure-based drug design, but may also capture snapshots of dynamic intermediates that become 'frozen' after inhibitor binding. Myxopyronin inhibits bacterial RNA polymerase (RNAP) by an unknown mechanism. Here we report the structure of dMyx--a desmethyl derivative of myxopyronin B--complexed with a Thermus thermophilus RNAP holoenzyme. The antibiotic binds to a pocket deep inside the RNAP clamp head domain, which interacts with the DNA template in the transcription bubble. Notably, binding of dMyx stabilizes refolding of the beta'-subunit switch-2 segment, resulting in a configuration that might indirectly compromise binding to, or directly clash with, the melted template DNA strand. Consistently, footprinting data show that the antibiotic binding does not prevent nucleation of the promoter DNA melting but instead blocks its propagation towards the active site. Myxopyronins are thus, to our knowledge, a first structurally characterized class of antibiotics that target formation of the pre-catalytic transcription initiation complex-the decisive step in gene expression control. Notably, mutations designed in switch-2 mimic the dMyx effects on promoter complexes in the absence of antibiotic. Overall, our results indicate a plausible mechanism of the dMyx action and a stepwise pathway of open complex formation in which core enzyme mediates the final stage of DNA melting near the transcription start site, and that switch-2 might act as a molecular checkpoint for DNA loading in response to regulatory signals or antibiotics. The universally conserved switch-2 may have the same role in all multisubunit RNAPs.


Assuntos
RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Dobramento de Proteína , Thermus thermophilus/enzimologia , Transcrição Gênica , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Apoproteínas/química , Sítios de Ligação , Cristalografia por Raios X , RNA Polimerases Dirigidas por DNA/genética , Holoenzimas/química , Holoenzimas/metabolismo , Lactonas/química , Lactonas/metabolismo , Lactonas/farmacologia , Modelos Biológicos , Modelos Moleculares , Conformação Molecular/efeitos dos fármacos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Estrutura Terciária de Proteína , Thermus thermophilus/genética , Sítio de Iniciação de Transcrição , Transcrição Gênica/efeitos dos fármacos
10.
Nucleic Acids Res ; 40(15): 7442-51, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22570421

RESUMO

Multisubunit RNA polymerase (RNAP) is the central information-processing enzyme in all cellular life forms, yet its mechanism of translocation along the DNA molecule remains conjectural. Here, we report direct monitoring of bacterial RNAP translocation following the addition of a single nucleotide. Time-resolved measurements demonstrated that translocation is delayed relative to nucleotide incorporation and occurs shortly after or concurrently with pyrophosphate release. An investigation of translocation equilibrium suggested that the strength of interactions between RNA 3' nucleotide and nucleophilic and substrate sites determines the translocation state of transcription elongation complexes, whereas active site opening and closure modulate the affinity of the substrate site, thereby favoring the post- and pre-translocated states, respectively. The RNAP translocation mechanism is exploited by the antibiotic tagetitoxin, which mimics pyrophosphate and induces backward translocation by closing the active site.


Assuntos
RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Transcrição Gênica , Bactérias/enzimologia , Domínio Catalítico , DNA/química , DNA/metabolismo , Ácidos Dicarboxílicos/química , Ácidos Dicarboxílicos/farmacologia , Difosfatos/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Corantes Fluorescentes , Nucleotídeos/metabolismo , Compostos Organofosforados/química , Compostos Organofosforados/farmacologia , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Transporte Proteico/efeitos dos fármacos , RNA/química , RNA/metabolismo
11.
Nat Commun ; 15(1): 3040, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589445

RESUMO

RfaH, a paralog of the universally conserved NusG, binds to RNA polymerases (RNAP) and ribosomes to activate expression of virulence genes. In free, autoinhibited RfaH, an α-helical KOW domain sequesters the RNAP-binding site. Upon recruitment to RNAP paused at an ops site, KOW is released and refolds into a ß-barrel, which binds the ribosome. Here, we report structures of ops-paused transcription elongation complexes alone and bound to the autoinhibited and activated RfaH, which reveal swiveled, pre-translocated pause states stabilized by an ops hairpin in the non-template DNA. Autoinhibited RfaH binds and twists the ops hairpin, expanding the RNA:DNA hybrid to 11 base pairs and triggering the KOW release. Once activated, RfaH hyper-stabilizes the pause, which thus requires anti-backtracking factors for escape. Our results suggest that the entire RfaH cycle is solely determined by the ops and RfaH sequences and provide insights into mechanisms of recruitment and metamorphosis of NusG homologs across all life.


Assuntos
Proteínas de Escherichia coli , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Transcrição Gênica , Transativadores/metabolismo , Proteínas de Escherichia coli/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , DNA
12.
Biochemistry ; 52(26): 4507-16, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23731237

RESUMO

Two functionally distinct homologous flavoprotein hydroxylases, PgaE and JadH, have been identified as branching points in the biosynthesis of the polyketide antibiotics gaudimycin C and jadomycin A, respectively. These evolutionarily related enzymes are both bifunctional and able to catalyze the same initial reaction, C-12 hydroxylation of the common angucyclinone intermediate prejadomycin. The enzymes diverge in their secondary activities, which include hydroxylation at C-12b by PgaE and dehydration at C-4a/C-12b by JadH. A further difference is that the C-12 hydroxylation is subject to substrate inhibition only in PgaE. Here we have identified regions associated with the C-12b hydroxylation in PgaE by extensive chimeragenesis, focusing on regions surrounding the active site. The results highlight the importance of a hairpin-ß motif near the dimer interface, with two nonconserved residues, P78 and I79 (corresponding to Q89 and F90, respectively, in JadH), and invariant residue H73 playing key roles. Kinetic characterization of PgaE variants demonstrates that the secondary C-12b hydroxylation and substrate inhibition by prejadomycin are likely to be interlinked. The crystal structure of the PgaE P78Q/I79F variant at 2.4 Å resolution confirms that the changes do not alter the conformation of the ß-strand secondary structure and that the side chains of these residues in effect point away from the active site toward the dimer interface. The results support a catalytic model for PgaE containing two binding modes for C-12 and C-12b hydroxylations, where binding of prejadomycin in the orientation for C-12b hydroxylation leads to substrate inhibition. The presence of an allosteric network is evident based on enzyme kinetics.


Assuntos
Antraquinonas/química , Cristalografia por Raios X , Oxigenases de Função Mista/química , Poligalacturonase/química , Streptomyces/enzimologia , Domínio Catalítico , Evolução Molecular , Hidroxilação , Oxigenases de Função Mista/genética , Mutagênese , Poligalacturonase/antagonistas & inibidores , Poligalacturonase/genética , Conformação Proteica , Streptomyces/genética , Relação Estrutura-Atividade , Especificidade por Substrato
13.
EMBO J ; 28(2): 112-22, 2009 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-19096362

RESUMO

Elongation factors NusG and RfaH evolved from a common ancestor and utilize the same binding site on RNA polymerase (RNAP) to modulate transcription. However, although NusG associates with RNAP transcribing most Escherichia coli genes, RfaH regulates just a few operons containing ops, a DNA sequence that mediates RfaH recruitment. Here, we describe the mechanism by which this specificity is maintained. We observe that RfaH action is indeed restricted to those several operons that are devoid of NusG in vivo. We also show that RfaH and NusG compete for their effects on transcript elongation and termination in vitro. Our data argue that RfaH recognizes its DNA target even in the presence of NusG. Once recruited, RfaH remains stably associated with RNAP, thereby precluding NusG binding. We envision a pathway by which a specialized regulator has evolved in the background of its ubiquitous paralogue. We propose that RfaH and NusG may have opposite regulatory functions: although NusG appears to function in concert with Rho, RfaH inhibits Rho action and activates the expression of poorly translated, frequently foreign genes.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteínas de Escherichia coli/genética , Modelos Moleculares , Conformação de Ácido Nucleico , Óperon , Fatores de Alongamento de Peptídeos/genética , Filogenia , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Fator Rho/genética , Fator Rho/metabolismo , Transativadores/genética , Fatores de Transcrição/genética
14.
J Biol Chem ; 286(24): 21633-42, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21527638

RESUMO

Membrane pyrophosphatases (PPases), divided into K(+)-dependent and K(+)-independent subfamilies, were believed to pump H(+) across cell membranes until a recent demonstration that some K(+)-dependent PPases function as Na(+) pumps. Here, we have expressed seven evolutionarily important putative PPases in Escherichia coli and estimated their hydrolytic, Na(+) transport, and H(+) transport activities as well as their K(+) and Na(+) requirements in inner membrane vesicles. Four of these enzymes (from Anaerostipes caccae, Chlorobium limicola, Clostridium tetani, and Desulfuromonas acetoxidans) were identified as K(+)-dependent Na(+) transporters. Phylogenetic analysis led to the identification of a monophyletic clade comprising characterized and predicted Na(+)-transporting PPases (Na(+)-PPases) within the K(+)-dependent subfamily. H(+)-transporting PPases (H(+)-PPases) are more heterogeneous and form at least three independent clades in both subfamilies. These results suggest that rather than being a curious rarity, Na(+)-PPases predominantly constitute the K(+)-dependent subfamily. Furthermore, Na(+)-PPases possibly preceded H(+)-PPases in evolution, and transition from Na(+) to H(+) transport may have occurred in several independent enzyme lineages. Site-directed mutagenesis studies facilitated the identification of a specific Glu residue that appears to be central in the transport mechanism. This residue is located in the cytoplasm-membrane interface of transmembrane helix 6 in Na(+)-PPases but shifted to within the membrane or helix 5 in H(+)-PPases. These results contribute to the prediction of the transport specificity and K(+) dependence for a particular membrane PPase sequence based on its position in the phylogenetic tree, identity of residues in the K(+) dependence signature, and position of the membrane-located Glu residue.


Assuntos
Pirofosfatase Inorgânica/metabolismo , Transporte Biológico , Cátions , Citoplasma/metabolismo , Relação Dose-Resposta a Droga , Escherichia coli/enzimologia , Evolução Molecular , Hidrólise , Cinética , Ligantes , Potássio/química , Bombas de Próton , Prótons , Proteínas Recombinantes/química , Sódio/química , Sódio/metabolismo
15.
Eur J Med Chem ; 237: 114342, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35439612

RESUMO

Showdomycin produced by Streptomyces showdoensis ATCC 15227 is a C-nucleoside microbial natural product with antimicrobial and cytotoxic properties. The unique feature of showdomycin in comparison to other nucleosides is its maleimide base moiety, which has the distinct ability to alkylate nucleophilic thiol groups by a Michael addition reaction. In order to understand structure-activity relationships of showdomycin, we synthesized a series of derivatives with modifications in the maleimide ring at the site of alkylation to moderate its reactivity. The showdomycin congeners were designed to retain the planarity of the base ring system to allow Watson-Crick base pairing and preserve the nucleosidic character of the compounds. Consequently, we synthesized triphosphates of showdomycin derivatives and tested their activity against RNA polymerases. Bromo, methylthio, and ethylthio derivatives of showdomycin were incorporated into RNA by bacterial and mitochondrial RNA polymerases and somewhat less efficiently by the eukaryotic RNA polymerase II. Showdomycin derivatives acted as uridine mimics and delayed further extension of the RNA chain by multi-subunit, but not mitochondrial RNA polymerases. Bioactivity profiling indicated that the mechanism of action of ethylthioshowdomycin was altered, with approximately 4-fold reduction in both cytotoxicity against human embryonic kidney cells and antibacterial activity against Escherichia coli. In addition, the ethylthio derivative was not inactivated by medium components or influenced by addition of uridine in contrast to showdomycin. The results explain how both the maleimide ring and the nucleoside nature contribute to the bioactivity of showdomycin and demonstrates for the first time that the two activities can be separated.


Assuntos
Nucleosídeos , Showdomicina , Antibacterianos/farmacologia , Humanos , Maleimidas/farmacologia , RNA , Showdomicina/farmacologia , Relação Estrutura-Atividade , Uridina
16.
Methods Enzymol ; 675: 207-233, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36220271

RESUMO

Transcription is the first and most highly regulated step in gene expression. Experimental techniques for monitoring transcription are, thus, important for studying gene expression and gene regulation as well as for translational research and drug development. Fluorescence methods are often superior to other techniques for real-time monitoring of biochemical processes. Green fluorescent proteins have long served as valuable tools for studying the process of translation. Here we present two methods that utilize fluorescent light-up RNA aptamers (FLAPs), the RNA mimics of green fluorescent proteins, to monitoring transcription and co-transcriptional RNA folding. FLAPs adopt defined three-dimensional folds that bind low molecular weight compounds called fluorogens with concomitant increase in fluorescence by many folds. FLAPs provide a strong fluorescence signal with low background that allows monitoring of transcription in real time in vitro and in vivo. However, it takes several seconds for RNA polymerase to synthesize FLAPs and the subsequent folding of the fluorogen-binding platform takes additional seconds or minutes. Here we show that Broccoli-FLAP is well suited for monitoring the rate of transcription initiation in a multi-round setup that mitigates the slow rate of the FLAP maturation. Furthermore, we demonstrate that a relatively slow and inefficient folding of iSpinach-FLAP can be taken advantage of for monitoring the action of RNA folding chaperones.


Assuntos
Aptâmeros de Nucleotídeos , Aptâmeros de Nucleotídeos/química , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/genética , RNA , Dobramento de RNA
17.
J Mol Biol ; 434(2): 167383, 2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-34863780

RESUMO

The expression of most bacterial genes commences with the binding of RNA polymerase (RNAP)-σ70 holoenzyme to the promoter DNA. This initial RNAP-promoter closed complex undergoes a series of conformational changes, including the formation of a transcription bubble on the promoter and the loading of template DNA strand into the RNAP active site; these changes lead to the catalytically active open complex (RPO) state. Recent cryo-electron microscopy studies have provided detailed structural insight on the RPO and putative intermediates on its formation pathway. Here, we employ single-molecule fluorescence microscopy to interrogate the conformational dynamics and reaction kinetics during real-time RPO formation on a consensus lac promoter. We find that the promoter opening may proceed rapidly from the closed to open conformation in a single apparent step, or may instead involve a significant intermediate between these states. The formed RPO complexes are also different with respect to their transcription bubble stability. The RNAP cleft loops, and especially the ß' rudder, stabilise the transcription bubble. The RNAP interactions with the promoter upstream sequence (beyond -35) stimulate transcription bubble nucleation and tune the reaction path towards stable forms of the RPO.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regiões Promotoras Genéticas , Microscopia Crioeletrônica/métodos , DNA Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Bacterianos , Holoenzimas/genética , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Iniciação da Transcrição Genética , Transcrição Gênica
18.
Mol Microbiol ; 76(2): 286-301, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20132437

RESUMO

RfaH is a bacterial elongation factor that increases expression of distal genes in several long, horizontally acquired operons. RfaH is recruited to the transcription complex during RNA chain elongation through specific interactions with a DNA element called ops. Following recruitment, RfaH remains bound to RNA polymerase (RNAP) and acts as an antiterminator by reducing RNAP pausing and termination at some factor-independent and Rho-dependent signals. RfaH consists of two domains connected by a flexible linker. The N-terminal RfaH domain (RfaH(N)) recognizes the ops element, binds to the RNAP and reduces pausing and termination in vitro. Functional analysis of single substitutions in this domain reported here suggests that three separate RfaH(N) regions mediate these functions. We propose that a polar patch on one side of RfaH(N) interacts with the non-template DNA strand during recruitment, whereas a hydrophobic surface on the opposite side of RfaH(N) remains bound to the beta' subunit clamp helices domain throughout transcription of the entire operon. The third region is apparently dispensable for RfaH binding to the transcription complex but is required for the antitermination modification of RNAP.


Assuntos
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Transativadores/genética , Transativadores/metabolismo , Transcrição Gênica , Substituição de Aminoácidos/genética , Análise Mutacional de DNA , DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Elementos Reguladores de Transcrição
19.
Nat Commun ; 12(1): 796, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542236

RESUMO

RNA polymerases (RNAPs) synthesize RNA from NTPs, whereas DNA polymerases synthesize DNA from 2'dNTPs. DNA polymerases select against NTPs by using steric gates to exclude the 2'OH, but RNAPs have to employ alternative selection strategies. In single-subunit RNAPs, a conserved Tyr residue discriminates against 2'dNTPs, whereas selectivity mechanisms of multi-subunit RNAPs remain hitherto unknown. Here, we show that a conserved Arg residue uses a two-pronged strategy to select against 2'dNTPs in multi-subunit RNAPs. The conserved Arg interacts with the 2'OH group to promote NTP binding, but selectively inhibits incorporation of 2'dNTPs by interacting with their 3'OH group to favor the catalytically-inert 2'-endo conformation of the deoxyribose moiety. This deformative action is an elegant example of an active selection against a substrate that is a substructure of the correct substrate. Our findings provide important insights into the evolutionary origins of biopolymers and the design of selective inhibitors of viral RNAPs.


Assuntos
Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Desoxirribonucleotídeos/metabolismo , Desoxirribose/metabolismo , Arginina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/ultraestrutura , Cristalografia por Raios X , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/isolamento & purificação , RNA Polimerases Dirigidas por DNA/ultraestrutura , Escherichia coli/enzimologia , Escherichia coli/genética , Cinética , Simulação de Acoplamento Molecular , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Especificidade por Substrato , Thermus thermophilus/enzimologia , Thermus thermophilus/genética
20.
Science ; 371(6524)2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33243850

RESUMO

Factor-dependent transcription termination mechanisms are poorly understood. We determined a series of cryo-electron microscopy structures portraying the hexameric adenosine triphosphatase (ATPase) ρ on a pathway to terminating NusA/NusG-modified elongation complexes. An open ρ ring contacts NusA, NusG, and multiple regions of RNA polymerase, trapping and locally unwinding proximal upstream DNA. NusA wedges into the ρ ring, initially sequestering RNA. Upon deflection of distal upstream DNA over the RNA polymerase zinc-binding domain, NusA rotates underneath one capping ρ subunit, which subsequently captures RNA. After detachment of NusG and clamp opening, RNA polymerase loses its grip on the RNA:DNA hybrid and is inactivated. Our structural and functional analyses suggest that ρ, and other termination factors across life, may use analogous strategies to allosterically trap transcription complexes in a moribund state.


Assuntos
Adenosina Trifosfatases/química , RNA Polimerases Dirigidas por DNA/química , Escherichia coli/genética , Fator Rho/química , Elongação da Transcrição Genética , Microscopia Crioeletrônica , Proteínas de Escherichia coli/química , Complexos Multiproteicos/química , Fatores de Alongamento de Peptídeos/química , Conformação Proteica , Transporte Proteico , Fatores de Transcrição/química , Fatores de Elongação da Transcrição/química , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA