Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Small ; 16(3): e1906108, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31830370

RESUMO

New point-of-care diagnostic devices are urgently needed for rapid and accurate diagnosis, particularly in the management of life-threatening infections and sepsis, where immediate treatment is key. Sepsis is a critical condition caused by systemic response to infection, with chances of survival drastically decreasing every hour. A novel portable biosensor based on nanoparticle-enhanced digital plasmonic imaging is reported for rapid and sensitive detection of two sepsis-related inflammatory biomarkers, procalcitonin (PCT) and C-reactive protein (CRP) directly from blood serum. The device achieves outstanding limit of detection of 21.3 pg mL-1 for PCT and 36 pg mL-1 for CRP, and dynamic range of at least three orders of magnitude. The portable device is deployed at Vall d'Hebron University Hospital in Spain and tested with a wide range of patient samples with sepsis, noninfectious systemic inflammatory response syndrome (SIRS), and healthy subjects. The results are validated against ultimate clinical diagnosis and currently used immunoassays, and show that the device provides accurate and robust performance equivalent to gold-standard laboratory tests. Importantly, the plasmonic imager can enable identification of PCT levels typical of sepsis and SIRS patients in less than 15 min. The compact and low-cost device is a promising solution for assisting rapid and accurate on-site sepsis diagnosis.


Assuntos
Nanotecnologia , Sepse/sangue , Síndrome de Resposta Inflamatória Sistêmica/sangue , Biomarcadores/sangue , Estudos de Casos e Controles , Feminino , Humanos , Limite de Detecção , Masculino
2.
Proteomics ; 14(1): 42-50, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24227478

RESUMO

Proteolytic signaling, or regulated proteolysis, is an essential part of many important pathways such as Notch, Wnt, and Hedgehog. How the structure of the cleaved substrate regions influences the efficacy of proteolytic processing remains underexplored. Here, we analyzed the relative importance in proteolysis of various structural features derived from substrate sequences using a dataset of more than 5000 experimentally verified proteolytic events captured in CutDB. Accessibility to the solvent was recognized as an essential property of a proteolytically processed polypeptide chain. Proteolytic events were found nearly uniformly distributed among three types of secondary structure, although with some enrichment in loops. Cleavages in α-helices were found to be relatively abundant in regions apparently prone to unfolding, while cleavages in ß-structures tended to be located at the periphery of ß-sheets. Application of the same statistical procedures to proteolytic events divided into separate sets according to the catalytic classes of proteases proved consistency of the results and confirmed that the structural mechanisms of proteolysis are universal. The estimated prediction power of sequence-derived structural features, which turned out to be sufficiently high, presents a rationale for their use in bioinformatic prediction of proteolytic events.


Assuntos
Sequência de Aminoácidos , Biologia Computacional/métodos , Proteínas/química , Proteínas/metabolismo , Proteólise , Modelos Estatísticos , Conformação Proteica , Curva ROC
3.
Anal Chim Acta ; 1077: 232-242, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31307714

RESUMO

Sepsis is a condition characterized by a severe stage of blood-infection often leading to tissue damage, organ failure and finally death. Fast diagnosis and identification of the sepsis stage (sepsis, severe sepsis or septic shock) is critical for the patient's evolution and could help in defining the most adequate treatment in order to reduce its mortality. The combined detection of several biomarkers in a timely, specific and simultaneous way could ensure a more accurate diagnosis. We have designed a new optical point-of-care (POC) device based on a phase-sensitive interferometric biosensor with a label-free microarray configuration for potential high-throughput evaluation of specific sepsis biomarkers. The sensor chip, which relies on the use of metallic nanostructures, provides versatility in terms of biofunctionalization, allowing the efficient immobilization of different kind of receptors such as antibodies or oligonucleotides. We have focused on two structurally different types of biomarkers: proteins, including C-reactive protein (CRP) and Interleukin 6 (IL6), and miRNAs, using miRNA-16 as an example. Limits of Detection (LoD) of 18 µg mL-1, 88 µg mL-1 and 1 µM (6 µg mL-1) have been respectively obtained for CRP, IL6 and miRNA-16 in individual assays, with high accuracy and reproducibility. The multiplexing capabilities have also been assessed with the simultaneous analysis of both protein biomarkers.


Assuntos
Proteína C-Reativa/análise , Interleucina-6/análise , MicroRNAs/análise , Biomarcadores/análise , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Ouro/química , Limite de Detecção , Análise em Microsséries/instrumentação , Análise em Microsséries/métodos , Nanoestruturas/química , Dispositivos Ópticos , Testes Imediatos , Reprodutibilidade dos Testes , Sepse/diagnóstico
4.
ACS Sens ; 4(1): 52-60, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30525470

RESUMO

Existing clinical methods for bacteria detection lack speed, sensitivity, and, importantly, point-of-care (PoC) applicability. Thus, finding ways to push the sensitivity of clinical PoC biosensing technologies is crucial. Here we report a portable PoC device based on lens-free interferometric microscopy (LIM). The device employs high performance nanoplasmonics and custom bioprinted microarrays and is capable of direct label-free bacteria ( E. coli) quantification. With only one-step sample handling we offer a sample-to-data turnaround time of 40 min. Our technology features detection sensitivity of a single bacterial cell both in buffer and in diluted blood plasma and is intrinsically limited by the number of cells present in the detection volume. When employed in a hospital setting, the device has enabled accurate categorization of sepsis patients (infectious SIRS) from control groups (healthy individuals and noninfectious SIRS patients) without false positives/negatives. User-friendly on-site bacterial clinical diagnosis can thus become a reality.


Assuntos
Técnicas Bacteriológicas/métodos , Sangue/microbiologia , Escherichia coli/isolamento & purificação , Interferometria/métodos , Microscopia/métodos , Testes Imediatos , Adsorção , Anticorpos Antibacterianos/química , Anticorpos Antibacterianos/imunologia , Carga Bacteriana/instrumentação , Carga Bacteriana/métodos , Proteínas de Bactérias/química , Técnicas Bacteriológicas/instrumentação , Bioimpressão , Escherichia coli/imunologia , Ouro/química , Humanos , Imunoensaio/instrumentação , Imunoensaio/métodos , Interferometria/instrumentação , Microscopia/instrumentação , Nanoestruturas/química , Análise Serial de Proteínas/instrumentação , Análise Serial de Proteínas/métodos , Sepse/sangue , Sepse/microbiologia
5.
Biochim Biophys Acta Biomembr ; 1861(10): 183000, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31152688

RESUMO

The supramolecular organization of the visual pigment rhodopsin in the photoreceptor membrane remains contentious. Specifically, whether this G protein-coupled receptor functions as a monomer or dimer remains unknown, as does the presence or absence of ordered packing of rhodopsin molecules in the photoreceptor membrane. Completely opposite opinions have been expressed on both issues. Herein, using small-angle neutron and X-ray scattering approaches, we performed a comparative analysis of the structural characteristics of the photoreceptor membrane samples in buffer, both in the outer segment of photoreceptor cells, and in the free photoreceptor disks. The average distance between the centers of two neighboring rhodopsin molecules was found to be ~5.8 nm in both cases. The results indicate an unusually high packing density of rhodopsin molecules in the photoreceptor membrane, but molecules appear to be randomly distributed in the membrane without any regular ordering.


Assuntos
Células Fotorreceptoras/química , Células Fotorreceptoras/fisiologia , Rodopsina/química , Animais , Bovinos , Membrana Celular/química , Membranas , Difração de Nêutrons/métodos , Nêutrons , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/ultraestrutura , Retina/metabolismo , Rodopsina/metabolismo , Rodopsina/ultraestrutura , Espalhamento a Baixo Ângulo
6.
ACS Nano ; 12(5): 4453-4461, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29715005

RESUMO

Nanoplasmonic devices have become a paradigm for biomolecular detection enabled by enhanced light-matter interactions in the fields from biological and pharmaceutical research to medical diagnostics and global health. In this work, we present a bright-field imaging plasmonic biosensor that allows visualization of single subwavelength gold nanoparticles (NPs) on large-area gold nanohole arrays (Au-NHAs). The sensor generates image heatmaps that reveal the locations of single NPs as high-contrast spikes, enabling the detection of individual NP-labeled molecules. We implemented the proposed method in a sandwich immunoassay for the detection of biotinylated bovine serum albumin (bBSA) and human C-reactive protein (CRP), a clinical biomarker of acute inflammatory diseases. Our method can detect 10 pg/mL of bBSA and 27 pg/mL CRP in 2 h, which is at least 4 orders of magnitude lower than the clinically relevant concentrations. Our sensitive and rapid detection approach paired with the robust large-area plasmonic sensor chips, which are fabricated using scalable and low-cost manufacturing, provides a powerful platform for multiplexed biomarker detection in various settings.


Assuntos
Técnicas Biossensoriais , Proteína C-Reativa/análise , Nanotecnologia , Soroalbumina Bovina/análise , Ressonância de Plasmônio de Superfície , Animais , Biomarcadores/análise , Bovinos , Ouro/química , Humanos , Nanopartículas Metálicas/química
7.
Light Sci Appl ; 7: 17152, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30839537

RESUMO

Nanophotonics, and more specifically plasmonics, provides a rich toolbox for biomolecular sensing, since the engineered metasurfaces can enhance light-matter interactions to unprecedented levels. So far, biosensing associated with high-quality factor plasmonic resonances has almost exclusively relied on detection of spectral shifts and their associated intensity changes. However, the phase response of the plasmonic resonances have rarely been exploited, mainly because this requires a more sophisticated optical arrangement. Here we present a new phase-sensitive platform for high-throughput and label-free biosensing enhanced by plasmonics. It employs specifically designed Au nanohole arrays and a large field-of-view interferometric lens-free imaging reader operating in a collinear optical path configuration. This unique combination allows the detection of atomically thin (angstrom-level) topographical features over large areas, enabling simultaneous reading of thousands of microarray elements. As the plasmonic chips are fabricated using scalable techniques and the imaging reader is built with low-cost off-the-shelf consumer electronic and optical components, the proposed platform is ideal for point-of-care ultrasensitive biomarker detection from small sample volumes. Our research opens new horizons for on-site disease diagnostics and remote health monitoring.

8.
Lab Chip ; 17(13): 2208-2217, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28585972

RESUMO

Cell secretion dynamics plays a central role in physiological and disease processes. Due to its various temporal profiles, it is essential to implement a precise detection scheme for continuous monitoring of secretion in real time. The current fluorescent and colorimetric approaches hinder such applications due to their multiple time-consuming steps, molecular labeling, and especially the 'snapshot' endpoint readouts. Here, we develop a nanoplasmonic biosensor for real-time monitoring of live cell cytokine secretion in a label-free configuration. Our nanoplasmonic biosensor is composed of gold nanohole arrays supporting extraordinary optical transmission (EOT), which enables sensitive and high-throughput analysis of biomolecules. The nanobiosensor is integrated with an adjustable microfluidic cell module for the analysis of live cells under well-controlled culture conditions. We achieved an outstanding sensitivity for the detection of vascular endothelial growth factor (VEGF) directly in complex cell media. Significantly, the secretion dynamics from live cancer cells were monitored and quantified for 10 hours while preserving good cell viability. This novel approach of probing cytokine secretion activity is compatible with conventional inverted microscopes found in a common biology laboratory. With its simple optical set-up and label-free detection configuration, we anticipate our nanoplasmonic biosensor to be a powerful tool as a lab-on-chip device to analyze cellular activities for fundamental cell research and biotechnologies.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Citológicas/instrumentação , Técnicas Citológicas/métodos , Nanoestruturas/química , Células HeLa , Humanos , Dispositivos Lab-On-A-Chip , Nanotecnologia , Fator A de Crescimento do Endotélio Vascular/análise , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Biosens Bioelectron ; 94: 560-567, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28364702

RESUMO

Development of rapid and multiplexed diagnostic tools is a top priority to address the current epidemic problem of sexually transmitted diseases. Here we introduce a novel nanoplasmonic biosensor for simultaneous detection of the two most common bacterial infections: Chlamydia trachomatis and Neisseria gonorrhoeae. Our plasmonic microarray is composed of gold nanohole sensor arrays that exhibit the extraordinary optical transmission (EOT), providing highly sensitive analysis in a label-free configuration. The integration in a microfluidic system and the precise immobilization of specific antibodies on the individual sensor arrays allow for selective detection and quantification of the bacteria in real-time. We achieved outstanding sensitivities for direct immunoassay of urine samples, with a limit of detection of 300 colony forming units (CFU)/mL for C. trachomatis and 1500CFU/mL for N. gonorrhoeae. The multiplexing capability of our biosensor was demonstrated by analyzing different urine samples spiked with either C. trachomatis or N. gonorrhoeae, and also containing both bacteria. We could successfully detect, identify and quantify the levels of the two bacteria in a one-step assay, without the need for DNA extraction or amplification techniques. This work opens up new possibilities for the implementation of point-of-care biosensors that enable fast, simple and efficient diagnosis of sexually transmitted infections.


Assuntos
Técnicas Biossensoriais/métodos , Chlamydia trachomatis/isolamento & purificação , DNA Bacteriano/isolamento & purificação , Neisseria gonorrhoeae/isolamento & purificação , Infecções por Chlamydia/urina , Chlamydia trachomatis/química , DNA Bacteriano/química , DNA Bacteriano/urina , Gonorreia/microbiologia , Gonorreia/urina , Humanos , Neisseria gonorrhoeae/química , Sistemas Automatizados de Assistência Junto ao Leito
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA