RESUMO
The family Pinnidae Leach, 1819, includes approximately 50 species of large subtidal and coastal marine bivalves. These commercially important species occur in tropical and temperate waters around the world and are most frequently found in seagrass meadows. The taxonomy of the family has been revised a number of times since the early 20th Century, the most recent revision recognizing 55 species distributed in three genera: Pinna, Atrina and Streptopinna, the latter being monotypic. However, to date no phylogenetic analysis of the family has been conducted using morphological or molecular data. The present study analyzed 306 pinnid specimens from around the world, comprising the three described genera and ca. 25 morphospecies. We sequenced the mitochondrial genes 16S rRNA and cytochrome c oxidase subunit I, and the nuclear ribosomal genes 18S rRNA and 28S rRNA. Phylogenetic analysis of the data revealed monophyly of the genus Atrina but also that the genus Streptopinna is nested within Pinna. Based on the strong support for this relationship we propose a new status for Streptopinna Martens, 1880 and treat it as a subgenus (status nov.) of Pinna Linnaeus, 1758. The phylogeny and the species delimitation analyses suggest the presence of cryptic species in many morphospecies displaying a wide Indo-Pacific distribution, including Pinna muricata, Atrina assimilis, A. exusta and P. (Streptopinna) saccata but also in the Atlantic species A. rigida. Altogether our results highlight the challenges associated with morphological identifications in Pinnidae due to the presence of both phenotypic plasticity and morphological stasis and reveal that many pinnid species are not as widely distributed as previously thought.
Assuntos
Bivalves/classificação , Filogenia , Animais , Teorema de Bayes , Bivalves/genética , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Evolução Molecular , Funções Verossimilhança , Modelos Genéticos , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética , Análise de Sequência de DNARESUMO
OBJECTIVE: To identify potential molecular mediators and biomarkers for osteoarthritis (OA), through comparative proteomic analysis of articular cartilage tissue obtained from normal donors without OA (n = 7) and patients with OA (n = 7). METHODS: The proteomic analyses comprised extraction of soluble proteins from cartilage, separation of the protein mixtures by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by in-gel digestion, and subsequent nano-liquid chromatography-tandem mass spectrometry analysis in conjunction with a database search for protein identification and semiquantitation. RESULTS: A total of 814 distinct proteins were identified with high confidence from 14 samples; 420 of these proteins were detected with > or = 3 unique peptides in at least 4 samples from the same group. Using stringent criteria, 59 proteins were found to be differentially expressed in OA cartilage. Gene Ontology and Ingenuity pathway analysis tools were used to characterize these proteins into functional categories. One of the up-regulated proteins, HtrA1, a serine protease, was detected at high levels in cartilage. CONCLUSION: Altered protein expression in the disease state is associated with many aspects of the pathogenesis of OA, such as increased proteolysis, lipid metabolism, immune response, and decreased signal transduction. To our knowledge, this is the first time that a large portion of these proteins and their expression patterns were identified in cartilage, thus providing new insights for finding novel pathologic mediators and biomarkers of OA.