Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 92: 103250, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31580982

RESUMO

Leukocyte transendothelial migration is one of the most important step in launching an inflammatory immune response and chronic inflammation can lead to devastating diseases. Leukocyte migration inhibitors are considered as promising and potentially effective therapeutic agents to treat inflammatory and auto-immune disorders. In this study, based on previous trioxotetrahydropyrimidin based integrin inhibitors that suboptimally blocked leukocyte adhesion, twelve molecules with a modified scaffold were designed, synthesized, and tested in vitro for their capacity to block the transendothelial migration of immune cells. One of the molecules, namely, methyl 4-((2-(tert-butyl)-6-((2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene) methyl) phenoxy) methyl) benzoate, (compound 12), completely blocked leukocyte transendothelial migration, without any toxic effects on immune or endothelial cells (IC50 = 2.4 µM). In vivo, compound 12 exhibited significant therapeutic effects in inflammatory bowel disease (IBD)/Crohn's disease, multiple sclerosis, fatty liver disease, and rheumatoid arthritis models. A detailed acute and chronic toxicity profile of the lead compound in vivo did not reveal any toxic effects. Such a type of molecule might therefore provide a unique starting point for designing a novel class of leukocyte transmigration blocking agents with broad therapeutic applications in inflammatory and auto-immune pathologies.


Assuntos
Linfócitos B/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Pirimidinas/síntese química , Linfócitos T/efeitos dos fármacos , Migração Transcelular de Célula/efeitos dos fármacos , Migração Transendotelial e Transepitelial/efeitos dos fármacos , Linfócitos B/imunologia , Adesão Celular/efeitos dos fármacos , Moléculas de Adesão Celular/imunologia , Células Endoteliais da Veia Umbilical Humana/imunologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação , Estrutura Molecular , Monócitos/imunologia , Mucoproteínas/imunologia , Pirimidinas/química , Pirimidinas/farmacologia , Linfócitos T/imunologia , Molécula 1 de Adesão de Célula Vascular/imunologia
2.
J Virol ; 88(16): 9429-41, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24920810

RESUMO

UNLABELLED: Kaposi's sarcoma-associated herpesvirus (KSHV, also called human herpesvirus 8) is linked to the development of Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman's disease (MCD). KSHV expresses several proteins that modulate host cell signaling pathways. One of these proteins is viral interleukin-6 (vIL-6), which is a homolog of human IL-6 (hIL-6). vIL-6 is able to prevent apoptosis and promote proinflammatory signaling, angiogenesis, and cell proliferation. Although it can be secreted, vIL-6 is mainly an intracellular protein that is retained in the endoplasmic reticulum (ER). We performed affinity purification and mass spectrometry to identify novel vIL-6 binding partners and found that a cellular ER chaperone, hypoxia-upregulated protein 1 (HYOU1), interacts with vIL-6. Immunohistochemical staining reveals that both PEL and KS tumor tissues express significant amounts of HYOU1. We also show that HYOU1 increases endogenous vIL-6 protein levels and that HYOU1 facilitates vIL-6-induced JAK/STAT signaling, migration, and survival in endothelial cells. Furthermore, our data suggest that HYOU1 also modulates vIL-6's ability to induce CCL2, a chemokine involved in cell migration. Finally, we investigated the impact of HYOU1 on cellular hIL-6 signaling. Collectively, our data indicate that HYOU1 is important for vIL-6 function and may play a role in the pathogenesis of KSHV-associated cancers. IMPORTANCE: KSHV vIL-6 is detectable in all KSHV-associated malignancies and promotes tumorigenesis and inflammation. We identified a cellular protein, called hypoxia-upregulated protein 1 (HYOU1), that interacts with KSHV vIL-6 and is present in KSHV-infected tumors. Our data suggest that HYOU1 facilitates the vIL-6-induced signaling, migration, and survival of endothelial cells.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Herpesvirus Humano 8/metabolismo , Interleucina-6/metabolismo , Proteínas Virais/metabolismo , Linhagem Celular , Quimiocina CCL2/metabolismo , Células HEK293 , Infecções por Herpesviridae/metabolismo , Humanos , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/virologia , Transdução de Sinais/fisiologia , Regulação para Cima/fisiologia
3.
Sci Signal ; 16(815): eadi9018, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085818

RESUMO

The nuclear factor erythroid 2-related factor 2 (NRF2) transcription factor activates cytoprotective and metabolic gene expression in response to various electrophilic stressors. Constitutive NRF2 activity promotes cancer progression, whereas decreased NRF2 function contributes to neurodegenerative diseases. We used proximity proteomic analysis to define protein networks for NRF2 and its family members NRF1, NRF3, and the NRF2 heterodimer MAFG. A functional screen of co-complexed proteins revealed previously uncharacterized regulators of NRF2 transcriptional activity. We found that ZNF746 (also known as PARIS), a zinc finger transcription factor implicated in Parkinson's disease, physically associated with NRF2 and MAFG, resulting in suppression of NRF2-driven transcription. ZNF746 overexpression increased oxidative stress and apoptosis in a neuronal cell model of Parkinson's disease, phenotypes that were reversed by chemical and genetic hyperactivation of NRF2. This study presents a functionally annotated proximity network for NRF2 and suggests a link between ZNF746 overexpression in Parkinson's disease and inhibition of NRF2-driven neuroprotection.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteínas Repressoras/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Correpressoras , Proteômica
4.
Cell Rep ; 42(11): 113389, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37925639

RESUMO

Acyl-protein thioesterases 1 and 2 (APT1 and APT2) reverse S-acylation, a potential regulator of systemic glucose metabolism in mammals. Palmitoylation proteomics in liver-specific knockout mice shows that APT1 predominates over APT2, primarily depalmitoylating mitochondrial proteins, including proteins linked to glutamine metabolism. miniTurbo-facilitated determination of the protein-protein proximity network of APT1 and APT2 in HepG2 cells reveals APT proximity networks encompassing mitochondrial proteins including the major translocases Tomm20 and Timm44. APT1 also interacts with Slc1a5 (ASCT2), the only glutamine transporter known to localize to mitochondria. High-fat-diet-fed male mice with dual (but not single) hepatic deletion of APT1 and APT2 have insulin resistance, fasting hyperglycemia, increased glutamine-driven gluconeogenesis, and decreased liver mass. These data suggest that APT1 and APT2 regulation of hepatic glucose metabolism and insulin signaling is functionally redundant. Identification of substrates and protein-protein proximity networks for APT1 and APT2 establishes a framework for defining mechanisms underlying metabolic disease.


Assuntos
Proteoma , Tioléster Hidrolases , Masculino , Camundongos , Animais , Proteoma/metabolismo , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo , Glutamina/metabolismo , Mitocôndrias/metabolismo , Fígado/metabolismo , Proteínas Mitocondriais/metabolismo , Glucose/metabolismo , Lipídeos , Mamíferos/metabolismo
5.
Redox Biol ; 67: 102901, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37776708

RESUMO

OBJECTIVE: NRF2 is a master transcription factor that regulates the stress response. NRF2 is frequently mutated and activated in human esophageal squamous cell carcinoma (ESCC), which drives resistance to chemotherapy and radiation therapy. Therefore, a great need exists for NRF2 inhibitors for targeted therapy of NRF2high ESCC. DESIGN: We performed high-throughput screening of two compound libraries from which hit compounds were further validated in human ESCC cells and a genetically modified mouse model. The mechanism of action of one compound was explored by biochemical assays. RESULTS: Using high-throughput screening of two small molecule compound libraries, we identified 11 hit compounds as potential NRF2 inhibitors with minimal cytotoxicity at specified concentrations. We then validated two of these compounds, pyrimethamine and mitoxantrone, by demonstrating their dose- and time-dependent inhibitory effects on the expression of NRF2 and its target genes in two NRF2Mut human ESCC cells (KYSE70 and KYSE180). RNAseq and qPCR confirmed the suppression of global NRF2 signaling by these two compounds. Mechanistically, pyrimethamine reduced NRF2 half-life by promoting NRF2 ubiquitination and degradation in KYSE70 and KYSE180 cells. Expression of an Nrf2E79Q allele in mouse esophageal epithelium (Sox2CreER;LSL-Nrf2E79Q/+) resulted in an NRF2high phenotype, which included squamous hyperplasia, hyperkeratinization, and hyperactive glycolysis. Treatment with pyrimethamine (30 mg/kg/day, p.o.) suppressed the NRF2high esophageal phenotype with no observed toxicity. CONCLUSION: We have identified and validated pyrimethamine as an NRF2 inhibitor that may be rapidly tested in the clinic for NRF2high ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Animais , Camundongos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/terapia , Neoplasias Esofágicas/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Pirimetamina/farmacologia , Pirimetamina/uso terapêutico , Hiperplasia , Linhagem Celular Tumoral , Proliferação de Células
6.
Cell Rep ; 34(6): 108743, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33567284

RESUMO

Neuronal morphogenesis involves dramatic plasma membrane expansion, fueled by soluble N-ethylmaleimide-sensitive factor attachment protein eceptors (SNARE)-mediated exocytosis. Distinct fusion modes described at synapses include full-vesicle fusion (FVF) and kiss-and-run fusion (KNR). During FVF, lumenal cargo is secreted and vesicle membrane incorporates into the plasma membrane. During KNR, a transient fusion pore secretes cargo but closes without membrane addition. In contrast, fusion modes are not described in developing neurons. Here, we resolve individual exocytic events in developing murine cortical neurons and use classification tools to identify four distinguishable fusion modes: two FVF-like modes that insert membrane material and two KNR-like modes that do not. Discrete fluorescence profiles suggest distinct behavior of the fusion pore. Simulations and experiments agree that FVF-like exocytosis provides sufficient membrane material for morphogenesis. We find the E3 ubiquitin ligase TRIM67 promotes FVF-like exocytosis in part by limiting incorporation of the Qb/Qc SNARE SNAP47 into SNARE complexes and, thus, SNAP47 involvement in exocytosis.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Exocitose , Neurogênese , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Sinapses/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Animais , Proteínas do Citoesqueleto/genética , Feminino , Camundongos , Camundongos Knockout , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/genética , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Sinapses/genética , Proteínas com Motivo Tripartido/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA