Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nat Mater ; 20(10): 1407-1413, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112978

RESUMO

Blending organic molecules to tune their energy levels is currently being investigated as an approach to engineer the bulk and interfacial optoelectronic properties of organic semiconductors. It has been proven that the ionization energy and electron affinity can be equally shifted in the same direction by electrostatic effects controlled by blending similar halogenated derivatives with different energetics. Here we show that the energy gap of organic semiconductors can also be tuned by blending. We use oligothiophenes with different numbers of thiophene rings as an example and investigate their structure and electronic properties. Photoelectron spectroscopy and inverse photoelectron spectroscopy show tunability of the single-particle gap, with the optical gaps showing similar, but smaller, effects. Theoretical analysis shows that this tuning is mainly caused by a change in the dielectric constant with blend ratio. Further studies will explore the practical impact of this energy-level engineering strategy for optoelectronic devices.

2.
Nat Mater ; 18(5): 459-464, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30936478

RESUMO

Intermolecular charge-transfer states at the interface between electron donating (D) and accepting (A) materials are crucial for the operation of organic solar cells but can also be exploited for organic light-emitting diodes1,2. Non-radiative charge-transfer state decay is dominant in state-of-the-art D-A-based organic solar cells and is responsible for large voltage losses and relatively low power-conversion efficiencies as well as electroluminescence external quantum yields in the 0.01-0.0001% range3,4. In contrast, the electroluminescence external quantum yield reaches up to 16% in D-A-based organic light-emitting diodes5-7. Here, we show that proper control of charge-transfer state properties allows simultaneous occurrence of a high photovoltaic and emission quantum yield within a single, visible-light-emitting D-A system. This leads to ultralow-emission turn-on voltages as well as significantly reduced voltage losses upon solar illumination. These results unify the description of the electro-optical properties of charge-transfer states in organic optoelectronic devices and foster the use of organic D-A blends in energy conversion applications involving visible and ultraviolet photons8-11.

3.
J Am Chem Soc ; 141(6): 2329-2341, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30620190

RESUMO

The involvement of charge-transfer (CT) states in the photogeneration and recombination of charge carriers has been an important focus of study within the organic photovoltaic community. In this work, we investigate the molecular factors determining the mechanism of photocurrent generation in low-donor-content organic solar cells, where the active layer is composed of vacuum-deposited C60 and small amounts of organic donor molecules. We find a pronounced decline of all photovoltaic parameters with decreasing CT state energy. Using a combination of steady-state photocurrent measurements and time-delayed collection field experiments, we demonstrate that the power conversion efficiency, and more specifically, the fill factor of these devices, is mainly determined by the bias dependence of photocurrent generation. By combining these findings with the results from ultrafast transient absorption spectroscopy, we show that blends with small CT energies perform poorly because of an increased nonradiative CT state decay rate and that this decay obeys an energy-gap law. Our work challenges the common view that a large energy offset at the heterojunction and/or the presence of fullerene clusters guarantee efficient CT dissociation and rather indicates that charge generation benefits from high CT state energies through a slower decay to the ground state.

4.
J Am Chem Soc ; 139(39): 13636-13639, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28914535

RESUMO

Three furan fused boron dipyrromethenes (BODIPYs) with a CF3 group on the meso-carbon are synthesized as near-infrared absorbing materials for vacuum processable organic solar cells. The best single junction device reaches a short-circuit current (jsc) of 13.3 mA cm-2 and a power conversion efficiency (PCE) of 6.1%. These values are highly promising for an electron donor material with an absorption onset beyond 900 nm. In a tandem solar cell comprising a NIR BODIPY subcell and a matching "green" absorber subcell, complementary absorption is achieved, resulting in PCE of ∼10%.

5.
J Am Chem Soc ; 139(4): 1699-1704, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28068763

RESUMO

In disordered organic semiconductors, the transfer of a rather localized charge carrier from one site to another triggers a deformation of the molecular structure quantified by the intramolecular relaxation energy. A similar structural relaxation occurs upon population of intermolecular charge-transfer (CT) states formed at organic electron donor (D)-acceptor (A) interfaces. Weak CT absorption bands for D-A complexes occur at photon energies below the optical gaps of both the donors and the C60 acceptor as a result of optical transitions from the neutral ground state to the ionic CT state. In this work, we show that temperature-activated intramolecular vibrations of the ground state play a major role in determining the line shape of such CT absorption bands. This allows us to extract values for the relaxation energy related to the geometry change from neutral to ionic CT complexes. Experimental values for the relaxation energies of 20 D:C60 CT complexes correlate with values calculated within density functional theory. These results provide an experimental method for determining the polaron relaxation energy in solid-state organic D-A blends and show the importance of a reduced relaxation energy, which we introduce to characterize thermally activated CT processes.

6.
ACS Appl Mater Interfaces ; 16(24): 31407-31418, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38841759

RESUMO

Intermolecular charge-transfer (CT) states are extended excitons with a charge separation on the nanometer scale. Through absorption and emission processes, they couple to the ground state. This property is employed both in light-emitting and light-absorbing devices. Their conception often relies on donor-acceptor (D-A) interfaces, so-called type-II heterojunctions, which usually generate significant electric fields. Several recent studies claim that these fields alter the energetic configuration of the CT states at the interface, an idea holding prospects like multicolor emission from a single emissive interface or shifting the absorption characteristics of a photodetector. Here, we test this hypothesis and contribute to the discussion by presenting a new model system. Through the fabrication of planar organic p-(i-)n junctions, we generate an ensemble of oriented CT states that allows the systematic assessment of electric field impacts. By increasing the thickness of the intrinsic layer at the D-A interface from 0 to 20 nm and by applying external voltages up to 6 V, we realize two different scenarios that controllably tune the intrinsic and extrinsic electric interface fields. By this, we obtain significant shifts of the CT-state peak emission of about 0.5 eV (170 nm from red to green color) from the same D-A material combination. This effect can be explained in a classical electrostatic picture, as the interface electric field alters the potential energy of the electric CT-state dipole. This study illustrates that CT-state energies can be tuned significantly if their electric dipoles are aligned to the interface electric field.

7.
ACS Appl Mater Interfaces ; 15(21): 25224-25231, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37191283

RESUMO

The introduction of nonfullerene acceptors (NFA) facilitated the realization of high-efficiency organic solar cells (OSCs); however, OSCs suffer from relatively large losses in open-circuit voltage (VOC) as compared to inorganic or perovskite solar cells. Further enhancement in power conversion efficiency requires an increase in VOC. In this work, we take advantage of the high dipole moment of twisted perylene-diimide (TPDI) as a nonfullerene acceptor (NFA) to enhance the VOC of OSCs. In multiple bulk heterojunction solar cells incorporating TPDI with three polymer donors (PTB7-Th, PM6 and PBDB-T), we observed a VOC enhancement by modifying the cathode with a polyethylenimine (PEIE) interlayer. We show that the dipolar interaction between the TPDI NFA and PEIE─enhanced by the general tendency of TPDI to form J-aggregates─plays a crucial role in reducing nonradiative voltage losses under a constant radiative limit of VOC. This is aided by comparative studies with PM6:Y6 bulk heterojunction solar cells. We hypothesize that incorporating NFAs with significant dipole moments is a feasible approach to improving the VOC of OSCs.

8.
Adv Sci (Weinh) ; 10(15): e2300057, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36995051

RESUMO

Organic phototransistors can enable many important applications such as nonvolatile memory, artificial synapses, and photodetectors in next-generation optical communication and wearable electronics. However, it is still a challenge to achieve a big memory window (threshold voltage response ∆Vth ) for phototransistors. Here, a nanographene-based heterojunction phototransistor memory with large ∆Vth responses is reported. Exposure to low intensity light (25.7 µW cm-2 ) for 1 s yields a memory window of 35 V, and the threshold voltage shift is found to be larger than 140 V under continuous light illumination. The device exhibits both good photosensitivity (3.6 × 105 ) and memory properties including long retention time (>1.5 × 105  s), large hysteresis (45.35 V), and high endurance for voltage-erasing and light-programming. These findings demonstrate the high application potential of nanographenes in the field of optoelectronics. In addition, the working principle of these hybrid nanographene-organic structured heterojunction phototransistor memory devices is described which provides new insight into the design of high-performance organic phototransistor devices.

9.
Mater Horiz ; 9(1): 220-251, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34704585

RESUMO

Omnipresent quality monitoring in food products, blood-oxygen measurement in lightweight conformal wrist bands, or data-driven automated industrial production: Innovation in many fields is being empowered by sensor technology. Specifically, organic photodetectors (OPDs) promise great advances due to their beneficial properties and low-cost production. Recent research has led to rapid improvement in all performance parameters of OPDs, which are now on-par or better than their inorganic counterparts, such as silicon or indium gallium arsenide photodetectors, in several aspects. In particular, it is possible to directly design OPDs for specific wavelengths. This makes expensive and bulky optical filters obsolete and allows for miniature detector devices. In this review, recent progress of such narrowband OPDs is systematically summarized covering all aspects from narrow-photo-absorbing materials to device architecture engineering. The recent challenges for narrowband OPDs, like achieving high responsivity, low dark current, high response speed, and good dynamic range are carefully addressed. Finally, application demonstrations covering broadband and narrowband OPDs are discussed. Importantly, several exciting research perspectives, which will stimulate further research on organic-semiconductor-based photodetectors, are pointed out at the very end of this review.


Assuntos
Gálio , Semicondutores , Silício/química , Análise Espectral
10.
Adv Sci (Weinh) ; 9(7): e2105113, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34994114

RESUMO

Highly responsive organic photodetectors allow a plethora of applications in fields like imaging, health, security monitoring, etc. Photomultiplication-type organic photodetectors (PM-OPDs) are a desirable option due to their internal amplification mechanism. However, for such devices, significant gain and low dark currents are often mutually excluded since large operation voltages often induce high shot noise. Here, a fully vacuum-processed PM-OPD is demonstrated using trap-assisted electron injection in BDP-OMe:C60 material system. By applying only -1 V, compared with the self-powered working condition, the responsivity is increased by one order of magnitude, resulting in an outstanding specific detectivity of ≈1013  Jones. Remarkably, the superior detectivity in the near-infrared region is stable and almost voltage-independent up to -10 V. Compared with two photovoltaic-type photodetectors, these PM-OPDs exhibit the great potential to be easily integrated with state-of-the-art readout electronics in terms of their high responsivity, fast response speed, and bias-independent specific detectivity. The employed vacuum fabrication process and the easy-to-adapt PM-OPD concept enable seamless upscaling of production, paving the way to a commercially relevant photodetector technology.


Assuntos
Eletrônica
11.
Adv Sci (Weinh) ; 9(24): e2200379, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35780500

RESUMO

A comprehensive study of the optical properties of CsPbBr3 perovskite multiple quantum wells (MQW) with organic barrier layers is presented. Quantum confinement is observed by a blue-shift in absorption and emission spectra with decreasing well width and agrees well with simulations of the confinement energies. A large increase of emission intensity with thinner layers is observed, with a photoluminescence quantum yield up to 32 times higher than that of bulk layers. Amplified spontaneous emission (ASE) measurements show very low thresholds down to 7.3 µJ cm-2 for a perovskite thickness of 8.7 nm, significantly lower than previously observed for CsPbBr3 thin-films. With their increased photoluminescence efficiency and low ASE thresholds, MQW structures with CsPbBr3 are excellent candidates for high-efficiency perovskite-based LEDs and lasers.

12.
Adv Mater ; 34(38): e2205015, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35924776

RESUMO

Wavelength-discriminating systems typically consist of heavy benchtop-based instruments, comprising diffractive optics, moving parts, and adjacent detectors. For simple wavelength measurements, such as lab-on-chip light source calibration or laser wavelength tracking, which do not require polychromatic analysis and cannot handle bulky spectroscopy instruments, lightweight, easy-to-process, and flexible single-pixel devices are attracting increasing attention. Here, a device is proposed for monotonously transforming wavelength information into the time domain with room-temperature phosphorescence at the heart of its functionality, which demonstrates a resolution down to 1 nm and below. It is solution-processed from a single host-guest system comprising organic room-temperature phosphors and colloidal quantum dots. The share of excited triplet states within the photoluminescent layer is dependent on the excitation wavelength and determines the afterglow intensity of the film, which is tracked by a simple photodetector. Finally, an all-organic thin-film wavelength sensor and two applications are demonstrated where this novel measurement concept successfully replaces a full spectrometer.

13.
ACS Appl Mater Interfaces ; 13(19): 23239-23246, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33960768

RESUMO

Extraction barriers are usually undesired in organic semiconductor devices since they lead to reduced device performance. In this work, we intentionally introduce an extraction barrier for holes, leading to nonlinear photoresponse. The effect is utilized in near-infrared (NIR) organic photodetectors (OPDs) to perform distance measurements, as delineated in the focus-induced photoresponse technique (FIP). The extraction barrier is introduced by inserting an anodic interlayer with deeper highest occupied molecular orbital (HOMO), compared to the donor material, into a well-performing OPD. With increasing irradiance, achieved by decreasing the illumination spot area on the OPD, a higher number of holes pile up at the anode, counteracting the built-in field and increasing charge-carrier recombination in the bulk. This intended nonlinear response of the photocurrent to the irradiance allows determining the distance between the OPD and the light source. We demonstrate fully vacuum-deposited organic NIR optical distance photodetectors with a detection area up to 256 mm2 and detection wavelengths at 850 and 1060 nm. Such NIR OPDs have a high potential for precise, robust, low-cost, and simple optical distance measurement setups.

14.
Nat Commun ; 12(1): 471, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33473110

RESUMO

Stability is now a critical factor in the commercialization of organic photovoltaic (OPV) devices. Both extrinsic stability to oxygen and water and intrinsic stability to light and heat in inert conditions must be achieved. Triplet states are known to be problematic in both cases, leading to singlet oxygen production or fullerene dimerization. The latter is thought to proceed from unquenched singlet excitons that have undergone intersystem crossing (ISC). Instead, we show that in bulk heterojunction (BHJ) solar cells the photo-degradation of C60 via photo-oligomerization occurs primarily via back-hole transfer (BHT) from a charge-transfer state to a C60 excited triplet state. We demonstrate this to be the principal pathway from a combination of steady-state optoelectronic measurements, time-resolved electron paramagnetic resonance, and temperature-dependent transient absorption spectroscopy on model systems. BHT is a much more serious concern than ISC because it cannot be mitigated by improved exciton quenching, obtained for example by a finer BHJ morphology. As BHT is not specific to fullerenes, our results suggest that the role of electron and hole back transfer in the degradation of BHJs should also be carefully considered when designing stable OPV devices.

15.
Nat Commun ; 12(1): 4259, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267210

RESUMO

Detection of electromagnetic signals for applications such as health, product quality monitoring or astronomy requires highly responsive and wavelength selective devices. Photomultiplication-type organic photodetectors have been shown to achieve high quantum efficiencies mainly in the visible range. Much less research has been focused on realizing near-infrared narrowband devices. Here, we demonstrate fully vacuum-processed narrow- and broadband photomultiplication-type organic photodetectors. Devices are based on enhanced hole injection leading to a maximum external quantum efficiency of almost 2000% at -10 V for the broadband device. The photomultiplicative effect is also observed in the charge-transfer state absorption region. By making use of an optical cavity device architecture, we enhance the charge-transfer response and demonstrate a wavelength tunable narrowband photomultiplication-type organic photodetector with external quantum efficiencies superior to those of pin-devices. The presented concept can further improve the performance of photodetectors based on the absorption of charge-transfer states, which were so far limited by the low external quantum efficiency provided by these devices.

16.
ACS Appl Mater Interfaces ; 13(10): 12603-12609, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33660501

RESUMO

Interfacial layers in conjunction with suitable charge-transport layers can significantly improve the performance of optoelectronic devices by facilitating efficient charge carrier injection and extraction. This work uses a neat C60 interlayer on the anode to experimentally reveal that surface recombination is a significant contributor to nonradiative recombination losses in organic solar cells. These losses are shown to proportionally increase with the extent of contact between donor molecules in the photoactive layer and a molybdenum oxide (MoO3) hole extraction layer, proven by calculating voltage losses in low- and high-donor-content bulk heterojunction device architectures. Using a novel in-device determination of the built-in voltage, the suppression of surface recombination, due to the insertion of a thin anodic-C60 interlayer on MoO3, is attributed to an enhanced built-in potential. The increased built-in voltage reduces the presence of minority charge carriers at the electrodes-a new perspective on the principle of selective charge extraction layers. The benefit to device efficiency is limited by a critical interlayer thickness, which depends on the donor material in bilayer devices. Given the high popularity of MoO3 as an efficient hole extraction and injection layer and the increasingly popular discussion on interfacial phenomena in organic optoelectronic devices, these findings are relevant to and address different branches of organic electronics, providing insights for future device design.

17.
Nat Commun ; 12(1): 551, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483507

RESUMO

Organic photodetectors have promising applications in low-cost imaging, health monitoring and near-infrared sensing. Recent research on organic photodetectors based on donor-acceptor systems has resulted in narrow-band, flexible and biocompatible devices, of which the best reach external photovoltaic quantum efficiencies approaching 100%. However, the high noise spectral density of these devices limits their specific detectivity to around 1013 Jones in the visible and several orders of magnitude lower in the near-infrared, severely reducing performance. Here, we show that the shot noise, proportional to the dark current, dominates the noise spectral density, demanding a comprehensive understanding of the dark current. We demonstrate that, in addition to the intrinsic saturation current generated via charge-transfer states, dark current contains a major contribution from trap-assisted generated charges and decreases systematically with decreasing concentration of traps. By modeling the dark current of several donor-acceptor systems, we reveal the interplay between traps and charge-transfer states as source of dark current and show that traps dominate the generation processes, thus being the main limiting factor of organic photodetectors detectivity.

18.
Adv Mater ; 33(44): e2102967, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34515381

RESUMO

Spectroscopic photodetection plays a key role in many emerging applications such as context-aware optical sensing, wearable biometric monitoring, and biomedical imaging. Photodetectors based on organic semiconductors open many new possibilities in this field. However, ease of processing, tailorable optoelectronic properties, and sensitivity for faint light are still significant challenges. Here, the authors report a novel concept for a tunable spectral detector by combining an innovative transmission cavity structure with organic absorbers to yield narrowband organic photodetection in the wavelength range of 400-1100 nm, fabricated in a full-vacuum process. Benefiting from this strategy, one of the best performed narrowband organic photodetectors is achieved with a finely wavelength-selective photoresponse (full-width-at-half-maximum of ≈40 nm), ultrahigh specific detectivity above 1014 Jones, the maximum response speed of 555 kHz, and a large dynamic range up to 168 dB. Particularly, an array of transmission cavity organic photodetectors is monolithically integrated on a small substrate to showcase a miniaturized spectrometer application, and a true proof-of-concept transmission spectrum measurement is successfully demonstrated. The excellent performance, the simple device fabrication as well as the possibility of high integration of this new concept challenge state-of-the-art low-noise silicon photodetectors and will mature the spectroscopic photodetection into technological realities.

19.
ChemSusChem ; 14(17): 3622-3631, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34111333

RESUMO

Organic solar cells are approaching power conversion efficiencies of other thin-film technologies. However, in order to become truly market competitive, the still substantial voltage losses need to be reduced. Here, the synthesis and characterization of four novel arylamine-based push-pull molecular donors was described, two of them exhibiting a methyl group at the para-position of the external phenyl ring of the arylamine block. Assessing the charge-transfer state properties and the effects of methylation on the open-circuit voltage of the device showed that devices based on methylated versions of the molecular donors exhibited reduced voltage losses due to decreased non-radiative recombination. Modelling suggested that methylation resulted in a tighter interaction between donor and acceptor molecules, turning into a larger oscillator strength to the charge-transfer states, thereby ensuing reduced non-radiative decay rates.

20.
J Phys Chem Lett ; 11(1): 129-135, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31829597

RESUMO

Efficient exciton dissociation and subsequent generation of free charge carriers at the organic donor-acceptor interface requires a number of electron-transfer processes. It is a common view that these steps result in an unavoidable energy loss in organic photovoltaic devices that is not present in other types of solar cells. The currently best performing organic solar cells with power conversion efficiencies over 16% challenge this view, and no interfacial charge-transfer states with energy significantly lower than the strongly absorbing singlet states are detected within the gap of the used donor and acceptor materials. This Perspective will discuss implications, the remaining sources of energy loss, and open questions to be solved to achieve power conversion efficiencies over 20%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA