Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Semin Immunol ; 25(3): 228-39, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-23218769

RESUMO

Influenza virus research has recently undergone a shift from a virus-centric perspective to one that embraces the full spectrum of virus-host interactions and cellular signaling events that determine disease outcome. This change has been brought about by the increasing use and expanding scope of high-throughput molecular profiling and computational biology, which together fuel discovery in systems biology. In this review, we show how these approaches have revealed an uncontrolled inflammatory response as a contributor to the extreme virulence of the 1918 pandemic and avian H5N1 viruses, and how this response differs from that induced by the 2009 H1N1 viruses responsible for the most recent influenza pandemic. We also discuss how new animal models, such as the Collaborative Cross mouse systems genetics platform, are key to the necessary systematic investigation of the impact of host genetics on infection outcome, how genome-wide RNAi screens have identified hundreds of cellular factors involved in viral replication, and how systems biology approaches are making possible the rational design of new drugs and vaccines against an ever-evolving respiratory virus.


Assuntos
Interações Hospedeiro-Patógeno , Influenza Humana/imunologia , Infecções por Orthomyxoviridae/imunologia , Orthomyxoviridae/imunologia , Biologia de Sistemas/métodos , Animais , Biologia Computacional , Modelos Animais de Doenças , Interação Gene-Ambiente , Ensaios de Triagem em Larga Escala , Humanos , Imunidade/genética , Vacinas contra Influenza/imunologia , Influenza Humana/epidemiologia , Influenza Humana/genética , Camundongos , Orthomyxoviridae/patogenicidade , Infecções por Orthomyxoviridae/genética , Pandemias , Virulência
2.
Nucleic Acids Res ; 42(8): 4962-71, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24623795

RESUMO

Active positive transcription elongation factor b (P-TEFb) is essential for cellular and human immunodeficiency virus type 1 (HIV-1) transcription elongation. CTIP2 represses P-TEFb activity in a complex containing 7SK RNA and HEXIM1. Recently, the inactive 7SK/P-TEFb small nuclear RNP (snRNP) has been detected at the HIV-1 core promoter as well as at the promoters of cellular genes, but a recruiting mechanism still remains unknown to date. Here we show global synergy between CTIP2 and the 7SK-binding chromatin master-regulator HMGA1 in terms of P-TEFb-dependent endogenous and HIV-1 gene expression regulation. While CTIP2 and HMGA1 concordingly repress the expression of cellular 7SK-dependent P-TEFb targets, the simultaneous knock-down of CTIP2 and HMGA1 also results in a boost in Tat-dependent and independent HIV-1 promoter activity. Chromatin immunoprecipitation experiments reveal a significant loss of CTIP2/7SK/P-TEFb snRNP recruitment to cellular gene promoters and the HIV-1 promoter on HMGA1 knock-down. Our findings not only provide insights into a recruiting mechanism for the inactive 7SK/P-TEFb snRNP, but may also contribute to a better understanding of viral latency.


Assuntos
HIV-1/genética , Proteína HMGA1a/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Linhagem Celular , Regulação da Expressão Gênica , Humanos
3.
Proc Natl Acad Sci U S A ; 110(41): 16598-603, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24062443

RESUMO

In 2012, a novel betacoronavirus, designated Middle East respiratory syndrome coronavirus or MERS-CoV and associated with severe respiratory disease in humans, emerged in the Arabian Peninsula. To date, 108 human cases have been reported, including cases of human-to-human transmission. The availability of an animal disease model is essential for understanding pathogenesis and developing effective countermeasures. Upon a combination of intratracheal, ocular, oral, and intranasal inoculation with 7 × 10(6) 50% tissue culture infectious dose of the MERS-CoV isolate HCoV-EMC/2012, rhesus macaques developed a transient lower respiratory tract infection. Clinical signs, virus shedding, virus replication in respiratory tissues, gene expression, and cytokine and chemokine profiles peaked early in infection and decreased over time. MERS-CoV caused a multifocal, mild to marked interstitial pneumonia, with virus replication occurring mainly in alveolar pneumocytes. This tropism of MERS-CoV for the lower respiratory tract may explain the severity of the disease observed in humans and the, up to now, limited human-to-human transmission.


Assuntos
Doenças Transmissíveis Emergentes/virologia , Modelos Animais de Doenças , Pulmão/patologia , Macaca mulatta , Síndrome Respiratória Aguda Grave/patologia , Síndrome Respiratória Aguda Grave/virologia , Animais , Pulmão/virologia , Microscopia Eletrônica de Transmissão , Especificidade da Espécie , Vírion/ultraestrutura , Replicação Viral/fisiologia , Eliminação de Partículas Virais/fisiologia
4.
Proc Natl Acad Sci U S A ; 110(31): 12655-60, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23852730

RESUMO

The positive transcription elongation factor b (P-TEFb) is involved in physiological and pathological events including inflammation, cancer, AIDS, and cardiac hypertrophy. The balance between its active and inactive form is tightly controlled to ensure cellular integrity. We report that the transcriptional repressor CTIP2 is a major modulator of P-TEFb activity. CTIP2 copurifies and interacts with an inactive P-TEFb complex containing the 7SK snRNA and HEXIM1. CTIP2 associates directly with HEXIM1 and, via the loop 2 of the 7SK snRNA, with P-TEFb. In this nucleoprotein complex, CTIP2 significantly represses the Cdk9 kinase activity of P-TEFb. Accordingly, we show that CTIP2 inhibits large sets of P-TEFb- and 7SK snRNA-sensitive genes. In hearts of hypertrophic cardiomyopathic mice, CTIP2 controls P-TEFb-sensitive pathways involved in the establishment of this pathology. Overexpression of the ß-myosin heavy chain protein contributes to the pathological cardiac wall thickening. The inactive P-TEFb complex associates with CTIP2 at the MYH7 gene promoter to repress its activity. Taken together, our results strongly suggest that CTIP2 controls P-TEFb function in physiological and pathological conditions.


Assuntos
Cardiomegalia/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Cardiomegalia/genética , Cardiomegalia/patologia , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , Células HEK293 , Humanos , Camundongos , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Fator B de Elongação Transcricional Positiva/genética , Estrutura Secundária de Proteína , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética
5.
J Infect Dis ; 210(3): 493-503, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24577508

RESUMO

Mucosal sites are continuously exposed to pathogenic microorganisms and are therefore equipped to control respiratory infections. Type 3 innate lymphoid cells (ILC3) are key players in antimicrobial defense in intestinal mucosa, through interleukin 17 and interleukin 22 (IL-22) production. The present study aimed at analyzing the distribution and function of ILC3 in the respiratory tract. We first observed that lung mucosa harbors a discrete population of ILC3 expressing CD127, CD90, CCR6, and the transcriptional factor RORγt. In addition, lung ILC3 were identified as a major source of IL-22 in response to interleukin 23 stimulation. During Streptococcus pneumoniae infection, ILC3 rapidly accumulated in the lung tissue to produce IL-22. In response to S. pneumoniae, dendritic cells and MyD88, an important adaptor of innate immunity, play critical functions in IL-22 production by ILC3. Finally, administration of the Toll-like receptor 5 agonist flagellin during S. pneumoniae challenge exacerbated IL-22 production by ILC3, a process that protects against lethal infection. In conclusion, boosting lung ILC3 might represent an interesting strategy to fight respiratory bacterial infections.


Assuntos
Interleucinas/metabolismo , Pulmão/metabolismo , Linfócitos/classificação , Linfócitos/fisiologia , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/metabolismo , Animais , Feminino , Interleucina-17/genética , Interleucina-17/metabolismo , Interleucinas/genética , Ativação Linfocitária , Camundongos , Camundongos Knockout , Streptococcus pneumoniae , Interleucina 22
6.
J Virol ; 87(9): 5239-54, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23449804

RESUMO

The 1918 pandemic influenza virus was the most devastating infectious agent in human history, causing fatal pneumonia and an estimated 20 to 50 million deaths worldwide. Previous studies indicated a prominent role of the hemagglutinin (HA) gene in efficient replication and high virulence of the 1918 virus in mice. It is, however, still unclear whether the high replication ability or the 1918 influenza virus HA gene is required for 1918 virus to exhibit high virulence in mice. Here, we examined the biological properties of reassortant viruses between the 1918 virus and a contemporary human H1N1 virus (A/Kawasaki/173/2001 [K173]) in a mouse model. In addition to the 1918 influenza virus HA, we demonstrated the role of the viral RNA replication complex in efficient replication of viruses in mouse lungs, whereas only the HA gene is responsible for lethality in mice. Global gene expression profiling of infected mouse lungs revealed that the 1918 influenza virus HA was sufficient to induce transcriptional changes similar to those induced by the 1918 virus, despite difference in lymphocyte gene expression. Increased expression of genes associated with the acute-phase response and the protein ubiquitination pathway were enriched during infections with the 1918 and 1918HA/K173 viruses, whereas reassortant viruses bearing the 1918 viral RNA polymerase complex induced transcriptional changes similar to those seen with the K173 virus. Taken together, these data suggest that HA and the viral RNA polymerase complex are critical determinants of Spanish influenza pathogenesis, but only HA, and not the viral RNA polymerase complex and NP, is responsible for extreme host responses observed in mice infected with the 1918 influenza virus.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Hemaglutininas/metabolismo , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H1N1/patogenicidade , Influenza Humana/virologia , Proteínas Virais/metabolismo , Animais , Linhagem Celular , RNA Polimerases Dirigidas por DNA/genética , Feminino , Hemaglutininas/genética , Humanos , Vírus da Influenza A Subtipo H1N1/enzimologia , Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/genética , Influenza Humana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica , Vírus Reordenados/enzimologia , Vírus Reordenados/genética , Vírus Reordenados/metabolismo , Vírus Reordenados/patogenicidade , Transcrição Gênica , Regulação para Cima , Proteínas Virais/genética
7.
Curr Top Microbiol Immunol ; 363: 235-59, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22976347

RESUMO

Host-pathogen interactions provide a fascinating example of two or more active genomes directly exerting mutual influence upon each other. These encounters can lead to multiple outcomes from symbiotic homeostasis to mutual annihilation, undergo multiple cycles of latency and lysogeny, and lead to coevolution of the interacting genomes. Such systems pose numerous challenges but also some advantages to modeling, especially in terms of functional, mathematical genome representations. The main challenges for the modeling process start with the conceptual definition of a genome for instance in the case of host-integrated viral genomes. Furthermore, hardly understood influences of the activity of either genome on the other(s) via direct and indirect mechanisms amplify the needs for a coherent description of genome activity. Finally, genetic and local environmental heterogeneities in both the host's cellular and the pathogen populations need to be considered in multiscale modeling efforts. We will review here two prominent examples of host-pathogen interactions at the genome level, discuss the current modeling efforts and their shortcomings, and explore novel ideas of representing active genomes which promise being particularly adapted to dealing with the modeling challenges posed by host-pathogen interactions.


Assuntos
Interações Hospedeiro-Patógeno , Biologia de Sistemas , Animais , Genoma , Humanos , Probabilidade , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia
8.
RNA Biol ; 10(3): 436-44, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23392246

RESUMO

The transactivating response element (TAR) of human immunodeficiency virus 1 (HIV-1) is essential for promoter transactivation by the viral transactivator of transcription (Tat). The Tat-TAR interaction thereby recruits active positive transcription elongation factor b (P-TEFb) from its inactive, 7SK/HEXIM1-bound form, leading to efficient viral transcription. Here, we show that the 7SK RNA-associating chromatin regulator HMGA1 can specifically bind to the HIV-1 TAR element and that 7SK RNA can thereby compete with TAR. The HMGA1-binding interface of TAR is located within the binding site for Tat and other cellular activators, and we further provide evidence for competition between HMGA1 and Tat for TAR-binding. HMGA1 negatively influences the expression of a HIV-1 promoter-driven reporter in a TAR-dependent manner, both in the presence and in the absence of Tat. The overexpression of the HMGA1-binding substructure of 7SK RNA results in a TAR-dependent gain of HIV-1 promoter activity similar to the effect of the shRNA-mediated knockdown of HMGA1. Our results support a model in which the HMGA1/TAR interaction prevents the binding of transcription-activating cellular co-factors and Tat, subsequently leading to reduced HIV-1 transcription.


Assuntos
Repetição Terminal Longa de HIV , HIV-1/genética , Proteína HMGA1a/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Sítios de Ligação , Regulação Viral da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/metabolismo , Proteína HMGA1a/genética , Células HeLa , Humanos , Modelos Genéticos , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , RNA Viral/genética , RNA Viral/metabolismo , Transcrição Gênica , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
9.
Cell Death Dis ; 9(2): 70, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29358700

RESUMO

TAF6δ is a pro-apoptotic splice variant of the RNA polymerase II general transcription factor, TAF6, that can dictate life vs. death decisions in animal cells. TAF6δ stands out from classical pro-apoptotic proteins because it is encoded by a gene that is essential at the cellular level, and because it functions as a component of the basal transcription machinery. TAF6δ has been shown to modulate the transcriptome landscape, but it is not known if changes in gene expression trigger apoptosis nor which TAF6δ-regulated genes contribute to cell death. Here we used microarrays to interrogate the genome-wide impact of TAF6δ on transcriptome dynamics at temporal resolution. The results revealed changes in pro-apoptotic BH3-only mitochondrial genes that correlate tightly with the onset of cell death. These results prompted us to test and validate a role for the mitochondrial pathway by showing that TAF6δ expression causes cytochrome c release into the cytoplasm. To further dissect the mechanism by which TAF6δ drives apoptosis, we pinpointed BIM and NOXA as candidate effectors. siRNA experiments showed that both BIM and NOXA contribute to TAF6δ-dependent cell death. Our results identify mitochondrial effectors of TAF6δ-driven apoptosis, thereby providing the first of mechanistic framework underlying the atypical TAF6δ apoptotic pathway's capacity to intersect with the classically defined apoptotic machinery to trigger cell death.


Assuntos
Apoptose , Proteína 11 Semelhante a Bcl-2/metabolismo , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Citocromos c/metabolismo , Ontologia Genética , Humanos , Mitocôndrias/efeitos dos fármacos , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Fatores de Tempo , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética , Transcriptoma/genética , Proteína bcl-X/metabolismo
10.
PLoS One ; 13(2): e0192242, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29438442

RESUMO

For years, GluN3A was solely considered to be a dominant-negative modulator of NMDARs, since its incorporation into receptors alters hallmark features of conventional NMDARs composed of GluN1/GluN2 subunits. Only recently, increasing evidence has accumulated that GluN3A plays a more diversified role. It is considered to be critically involved in the maturation of glutamatergic synapses, and it might act as a molecular brake to prevent premature synaptic strengthening. Its expression pattern supports a putative role during neural development, since GluN3A is predominantly expressed in early pre- and postnatal stages. In this study, we used RNA interference to efficiently knock down GluN3A in 46C-derived neural stem cells (NSCs) both at the mRNA and at the protein level. Global gene expression profiling upon GluN3A knockdown revealed significantly altered expression of a multitude of neural genes, including genes encoding small GTPases, retinal proteins, and cytoskeletal proteins, some of which have been previously shown to interact with GluN3A or other iGluR subunits. Canonical pathway enrichment studies point at important roles of GluN3A affecting key cellular pathways involved in cell growth, proliferation, motility, and survival, such as the mTOR pathway. This study for the first time provides insights into transcriptome changes upon the specific knockdown of an NMDAR subunit in NSCs, which may help to identify additional functions and downstream pathways of GluN3A and GluN3A-containing NMDARs.


Assuntos
Técnicas de Silenciamento de Genes , Células-Tronco Neurais/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Receptores de N-Metil-D-Aspartato/genética , Animais , Perfilação da Expressão Gênica , Camundongos , Ligação Proteica , Receptores de N-Metil-D-Aspartato/metabolismo
11.
Vet Immunol Immunopathol ; 202: 46-51, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30078598

RESUMO

Polyvalent clostridial vaccines, composed of a complex mixture of toxoids from up to 9 different species, are highly effective in controlling clostridial diseases in cattle and sheep. Commercially available vaccines usually state that in normal field conditions two doses administered 4 to 6 weeks apart elicit protective antibody levels that will last for one year. However, studies on the development and duration of the antibody response against the different Clostridium species in target animals are scarce and only partial. Evaluating the temporal evolution of the antibody responses upon vaccination in target species is relevant to understand the bases of protective immunity induced by these vaccines and to develop new optimized vaccines. Here, we assessed the antibody response in sheep against each Clostridium component of two different 9-valent Clostridial vaccines over the period of one year. One vaccine was a commercially available vaccine and the other was an experimental vaccine prepared by us with the same antigens that we used to set up a specific ELISA for each Clostridium species. Both vaccines showed similar results, irrespectively of the origin of the antigens used for the ELISAs, with antibody titers that peaked at day 36 after vaccination and large inter individual variations in the magnitude of the response. Antibody titers were maintained up to 90 days and then markedly decreased, becoming even undetectable in some animals 6 months after vaccination. Given that the current scheme of yearly revaccination has largely shown to be effective at controlling the burden of disease, our results strongly suggest that circulating antibody levels cannot completely explain the protective immunity elicited by these vaccines, and prompt for further studies into the correlates of protection of clostridial vaccines.


Assuntos
Vacinas Bacterianas/imunologia , Infecções por Clostridium/veterinária , Doenças dos Ovinos/imunologia , Ovinos/imunologia , Tétano/veterinária , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Clostridium , Infecções por Clostridium/imunologia , Infecções por Clostridium/prevenção & controle , Clostridium tetani , Injeções Subcutâneas , Análise de Componente Principal , Doenças dos Ovinos/microbiologia , Doenças dos Ovinos/prevenção & controle , Tétano/imunologia , Tétano/prevenção & controle , Fatores de Tempo , Vacinação/veterinária
12.
Genomics Proteomics Bioinformatics ; 15(5): 313-323, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29037489

RESUMO

The transactivating response element (TAR) structure of the nascent HIV-1 transcript is critically involved in the recruitment of inactive positive transcription elongation factor b (P-TEFb) to the promoter proximal paused RNA polymerase II. The viral transactivator Tat is responsible for subsequent P-TEFb activation in order to start efficient viral transcription elongation. In the absence of the viral transactivator of transcription (Tat), e.g., during latency or in early stages of HIV transcription, TAR mediates an interaction of P-TEFb with its inhibitor hexamethylene bis-acetamide-inducible protein 1 (HEXIM1), keeping P-TEFb in its inactive form. In this study, we address the function of HIV-1 TAR in the absence of Tat by analyzing consequences of HIV-1 TAR overexpression on host cellular gene expression. An RNA chimera consisting of Epstein-Barr virus-expressed RNA 2 (EBER2) and HIV-1 TAR was developed to assure robust overexpression of TAR in HEK293 cells. The overexpression results in differential expression of more than 800 human genes. A significant proportion of these genes is involved in the suppression of cellular immune responses, including a significant set of 7SK-responsive P-TEFb target genes. Our findings identify a novel role for HIV-1 TAR in the absence of Tat, involving the interference with host cellular immune responses by targeting 7SK RNA-mediated gene expression and P-TEFb inactivation.


Assuntos
Regulação da Expressão Gênica , Repetição Terminal Longa de HIV/genética , HIV-1/genética , Imunidade Celular/genética , Fator B de Elongação Transcricional Positiva/metabolismo , RNA Longo não Codificante/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/deficiência , Sequência de Bases , Quinase 9 Dependente de Ciclina/metabolismo , Células HEK293 , Proteínas HMGA/metabolismo , Humanos , Modelos Biológicos , RNA Longo não Codificante/química , RNA Longo não Codificante/genética , RNA Viral/genética , RNA Viral/metabolismo , Transdução de Sinais/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
13.
Sci Rep ; 6: 34920, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27725726

RESUMO

Among many cellular transcriptional regulators, Bcl11b/CTIP2 and HGMA1 have been described to control the establishment and the persistence of HIV-1 latency in microglial cells, the main viral reservoir in the brain. In this present work, we identify and characterize a transcription factor i.e. HIC1, which physically interacts with both Bcl11b/CTIP2 and HMGA1 to co-regulate specific subsets of cellular genes and the viral HIV-1 gene. Our results suggest that HIC1 represses Tat dependent HIV-1 transcription. Interestingly, this repression of Tat function is linked to HIC1 K314 acetylation status and to SIRT1 deacetylase activity. Finally, we show that HIC1 interacts and cooperates with HGMA1 to regulate Tat dependent HIV-1 transcription. Our results also suggest that HIC1 repression of Tat function happens in a TAR dependent manner and that this TAR element may serve as HIC1 reservoir at the viral promoter to facilitate HIC1/TAT interaction.


Assuntos
HIV-1/genética , Proteína HMGA1a/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Neuroglia/virologia , Proteínas Repressoras/metabolismo , Transcrição Gênica , Proteínas Supressoras de Tumor/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Células Cultivadas , Humanos
14.
Biomolecules ; 5(2): 943-57, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26117853

RESUMO

The high mobility group protein A1 (HMGA1) is a master regulator of chromatin structure mediating its major gene regulatory activity by direct interactions with A/T-rich DNA sequences located in the promoter and enhancer regions of a large variety of genes. HMGA1 DNA-binding through three AT-hook motifs results in an open chromatin structure and subsequently leads to changes in gene expression. Apart from its significant expression during development, HMGA1 is over-expressed in virtually every cancer, where HMGA1 expression levels correlate with tumor malignancy. The exogenous overexpression of HMGA1 can lead to malignant cell transformation, assigning the protein a key role during cancerogenesis. Recent studies have unveiled highly specific competitive interactions of HMGA1 with cellular and viral RNAs also through an AT-hook domain of the protein, significantly impacting the HMGA1-dependent gene expression. In this review, we discuss the structure and function of HMGA1-RNA complexes during transcription and epigenomic regulation and their implications in HMGA1-related diseases.


Assuntos
Proteínas HMGA/metabolismo , RNA Nuclear Pequeno/metabolismo , RNA Viral/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Montagem e Desmontagem da Cromatina , Proteínas HMGA/química , Proteínas HMGA/genética , Humanos , Dados de Sequência Molecular , Ligação Proteica , RNA Nuclear Pequeno/química , RNA Viral/química
15.
Vaccine ; 33(29): 3331-41, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26003491

RESUMO

The Toll-like receptor 5 (TLR5) agonist flagellin is an effective adjuvant for vaccination. Recently, we demonstrated that the adaptive responses stimulated by intranasal administration of flagellin and antigen were linked to TLR5 signaling in the lung epithelium. The present study sought to identify the antigen presenting cells involved in this adjuvant activity. We first found that the lung dendritic cells captured antigen very efficiently in a process independent of TLR5. However, TLR5-mediated signaling specifically enhanced the maturation of lung dendritic cells. Afterward, the number of antigen-bound and activated conventional dendritic cells (both CD11b(+) and CD103(+)) increased in the mediastinal lymph nodes in contrast to monocyte-derived dendritic cells. These data suggested that flagellin-activated lung conventional dendritic cells migrate to the draining lymph nodes. The lymph node dendritic cells, in particular CD11b(+) cells, were essential for induction of CD4 T-cell response. Lastly, neutrophils and monocytes were recruited into the lungs by flagellin administration but did not contribute to the adjuvant activity. The functional activation of conventional dendritic cells was independent of direct TLR5 signaling, thereby supporting the contribution of maturation signals produced by flagellin-stimulated airway epithelium. In conclusion, our results demonstrated that indirect TLR5-dependent stimulation of airway conventional dendritic cells is essential to flagellin's mucosal adjuvant activity.


Assuntos
Adjuvantes Imunológicos/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Flagelina/metabolismo , Mucosa Respiratória/imunologia , Sistema Respiratório/imunologia , Receptor 5 Toll-Like/agonistas , Animais , Imunidade Inata , Imunidade nas Mucosas , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H
16.
J Clin Endocrinol Metab ; 100(4): E550-60, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25599386

RESUMO

CONTEXT: Adrenal mast cells can stimulate aldosterone secretion through the local release of serotonin (5-HT) and activation of the 5-HT4 receptor (5-HT4). In aldosterone-producing adenomas (APAs), 5-HT4 receptor is overexpressed and the administration of 5-HT4 receptor agonists to patients with APA increases plasma aldosterone levels. These data and the well-documented role of mast cells in tumorigenesis suggest that mast cells may be involved in the pathophysiology of APA. OBJECTIVE: The study aimed at investigating the occurrence of mast cells in a series of APA tissues and to examine the influence of mast cells on aldosterone secretion. DESIGN: The occurrence of mast cells in APAs was investigated by immunohistochemistry. Mast cell densities were compared with clinical data. The influence of mast cells on aldosterone production was studied by using cultures of human mast cell and adrenocortical cell lines. RESULTS: In APA tissues, the density of mast cells was found to be increased in comparison with normal adrenals. Mast cells were primarily observed in adrenal cortex adjacent to adenomas or in the adenomas themselves, distinguishing two groups of APAs. A subset of adenomas was found to contain a high density of intratumoral mast cells, which was correlated with aldosterone synthase expression and in vivo aldosterone secretory parameters. Administration of conditioned medium from cultures of human mast cell lines to human adrenocortical cells induced a significant increase in aldosterone synthase (CYP11B2) mRNA expression and aldosterone production. CONCLUSION: APA tissues commonly contain numerous mast cells that may influence aldosterone secretion through the local release of regulatory factors.


Assuntos
Adenoma/metabolismo , Adenoma/patologia , Neoplasias do Córtex Suprarrenal/metabolismo , Neoplasias do Córtex Suprarrenal/patologia , Aldosterona/metabolismo , Mastócitos/patologia , Adenoma/genética , Neoplasias do Córtex Suprarrenal/genética , Aldosterona/farmacologia , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Hiperaldosteronismo/complicações , Hiperaldosteronismo/genética , Hiperaldosteronismo/metabolismo , Hiperaldosteronismo/patologia , Hiperplasia , Mastócitos/efeitos dos fármacos , Mastócitos/fisiologia , Análise em Microsséries , Estudos Retrospectivos
17.
Genomics Proteomics Bioinformatics ; 12(1): 8-18, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24394593

RESUMO

The thymine DNA glycosylase (TDG) is a multifunctional enzyme, which is essential for embryonic development. It mediates the base excision repair (BER) of G:T and G:U DNA mismatches arising from the deamination of 5-methyl cytosine (5-MeC) and cytosine, respectively. Recent studies have pointed at a role of TDG during the active demethylation of 5-MeC within CpG islands. TDG interacts with the histone acetylase CREB-binding protein (CBP) to activate CBP-dependent transcription. In addition, TDG also interacts with the retinoic acid receptor α (RARα), resulting in the activation of RARα target genes. Here we provide evidence for the existence of a functional ternary complex containing TDG, CBP and activated RARα. Using global transcriptome profiling, we uncover a coupling of de novo methylation-sensitive and RA-dependent transcription, which coincides with a significant subset of CBP target genes. The introduction of a point mutation in TDG, which neither affects overall protein structure nor BER activity, leads to a significant loss in ternary complex stability, resulting in the deregulation of RA targets involved in cellular networks associated with DNA replication, recombination and repair. We thus demonstrate for the first time a direct coupling of TDG's epigenomic and transcription regulatory function through ternary complexes with CBP and RARα.


Assuntos
Proteína de Ligação a CREB/metabolismo , Metilação de DNA , Regulação da Expressão Gênica , Receptores do Ácido Retinoico/metabolismo , Timina DNA Glicosilase/metabolismo , Tretinoína/metabolismo , Sequência de Aminoácidos , Animais , Proteína de Ligação a CREB/genética , Linhagem Celular , DNA/genética , DNA/metabolismo , Humanos , Dados de Sequência Molecular , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Receptores do Ácido Retinoico/genética , Receptor alfa de Ácido Retinoico , Timina DNA Glicosilase/química , Timina DNA Glicosilase/genética , Transcrição Gênica
18.
PLoS One ; 9(7): e102399, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25025302

RESUMO

The TAF6δ pathway of apoptosis can dictate life versus death decisions independently of the status of p53 tumor suppressor. TAF6δ is an inducible pro-apoptotic subunit of the general RNA polymerase II (Pol II) transcription factor TFIID. Alternative splice site choice of TAF6δ has been shown to be a pivotal event in triggering death via the TAF6δ pathway, yet nothing is currently known about the mechanisms that promote TAF6δ splicing. Furthermore the transcriptome impact of the gain of function of TAF6δ versus the loss of function of the major TAF6α splice form remains undefined. Here we employ comparative microarray analysis to show that TAF6δ drives a transcriptome profile distinct from that resulting from depletion of TAF6α. To define the cis-acting RNA elements responsible for TAF6δ alternative splicing we performed a mutational analysis of a TAF6 minigene system. The data point to several new RNA elements that can modulate TAF6δ and also reveal a role for RNA secondary structure in the selection of TAF6δ.


Assuntos
Processamento Alternativo , RNA/genética , Fatores Associados à Proteína de Ligação a TATA/genética , Transcriptoma , Éxons , Inativação Gênica , Células HeLa , Humanos , Conformação de Ácido Nucleico , RNA/química , RNA Interferente Pequeno/genética
19.
Hypertension ; 63(5): 1102-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24591336

RESUMO

Elucidation of the molecular mechanisms leading to autonomous aldosterone secretion is a prerequisite to define potential targets and biomarkers in the context of primary aldosteronism. After a genome-wide association study with subjects from the population-based Cooperative Health Research in the Region of Augsburg F4 survey, we observed a highly significant association (P=6.78×10(-11)) between the aldosterone to renin ratio and a locus at 5q32. Hypothesizing that this locus may contain genes of relevance for the pathogenesis of primary aldosteronism, we investigated solute carrier family 26 member 2 (SLC26A2), a protein with known transport activity for sulfate and other cations. Within murine tissues, adrenal glands showed the highest expression levels for SLC26A2, which was significantly downregulated on in vivo stimulation with angiotensin II and potassium. SLC26A2 expression was found to be significantly lower in aldosterone-producing adenomas in comparison with normal adrenal glands. In adrenocortical NCI-H295R cells, specific knockdown of SLC26A2 resulted in a highly significant increase in aldosterone secretion. Concomitantly, expression of steroidogenic enzymes, as well as upstream effectors including transcription factors such as NR4A1, CAMK1, and intracellular Ca(2+) content, was upregulated in knockdown cells. To substantiate further these findings in an SLC26A2 mutant mouse model, aldosterone output proved to be increased in a sex-specific manner. In summary, these findings point toward a possible effect of SLC26A2 in the regulation of aldosterone secretion potentially involved in the pathogenesis of primary aldosteronism.


Assuntos
Córtex Suprarrenal/metabolismo , Aldosterona/metabolismo , Proteínas de Transporte de Ânions/metabolismo , Sistema Renina-Angiotensina/fisiologia , Córtex Suprarrenal/efeitos dos fármacos , Córtex Suprarrenal/patologia , Adulto , Idoso , Angiotensina II/farmacologia , Animais , Proteínas de Transporte de Ânions/genética , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Feminino , Estudo de Associação Genômica Ampla , Humanos , Hiperaldosteronismo/metabolismo , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Mutantes , Pessoa de Meia-Idade , Modelos Animais , Potássio/farmacologia , Sistema Renina-Angiotensina/genética , Transportadores de Sulfato
20.
Cell Rep ; 7(6): 1779-88, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24931612

RESUMO

Over the course of cortical neurogenesis, the transition of progenitors from proliferation to differentiation requires a precise regulation of involved gene networks under varying environmental conditions. In order to identify such regulatory mechanisms, we analyzed microRNA (miRNA) target networks in progenitors during early and late stages of neurogenesis. We found that cyclin D1 is a network hub whose expression is miRNA-dosage sensitive. Experimental validation revealed a feedback regulation between cyclin D1 and its regulating miRNAs miR-20a, miR-20b, and miR-23a. Cyclin D1 induces expression of miR-20a and miR-20b, whereas it represses miR-23a. Inhibition of any of these miRNAs increases the developmental stage-specific mean and dynamic expression range (variance) of cyclin D1 protein in progenitors, leading to reduced neuronal differentiation. Thus, miRNAs establish robustness and stage-specific adaptability to a critical dosage-sensitive gene network during cortical neurogenesis. Understanding such network regulatory mechanisms for key developmental events can provide insights into individual susceptibilities for genetically complex neuropsychiatric disorders.


Assuntos
Redes Reguladoras de Genes , MicroRNAs/genética , Neurogênese/genética , Células-Tronco/citologia , Animais , Diferenciação Celular/genética , Humanos , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA