Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microsc Microanal ; 20(3): 715-22, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24713100

RESUMO

It is demonstrated that energy-filtered transmission electron microscope enables following of in situ changes of the Ca-L2,3 edge which can originate from variations in both local symmetry and bond lengths. Low accelerating voltages of 20 and 40 kV slow down radiation damage effects and enable study of the start and finish of phase transformations. We observed electron beam-induced phase transformation of single crystalline calcite (CaCO3) to polycrystalline calcium oxide (CaO) which occurs in different stages. The coordination of Ca in calcite is close to an octahedral one streched along the <111> direction. Changes during phase transformation to an octahedral coordination of Ca in CaO go along with a bond length increase by 5 pm, where oxygen is preserved as a binding partner. Electron loss near-edge structure of the Ca-L2,3 edge show four separated peaks, which all shift toward lower energies during phase transformation at the same time the energy level splitting increases. We suggest that these changes can be mainly addressed to the change of the bond length on the order of picometers. An important pre-condition for such studies is stability of the energy drift in the range of meV over at least 1 h, which is achieved with the sub-Ångström low-voltage transmission electron microscope I prototype microscope.

2.
Phys Rev Lett ; 108(19): 196102, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-23003063

RESUMO

We present an accurate measurement and a quantitative analysis of electron-beam-induced displacements of carbon atoms in single-layer graphene. We directly measure the atomic displacement ("knock-on") cross section by counting the lost atoms as a function of the electron-beam energy and applied dose. Further, we separate knock-on damage (originating from the collision of the beam electrons with the nucleus of the target atom) from other radiation damage mechanisms (e.g., ionization damage or chemical etching) by the comparison of ordinary (12C) and heavy (13C) graphene. Our analysis shows that a static lattice approximation is not sufficient to describe knock-on damage in this material, while a very good agreement between calculated and experimental cross sections is obtained if lattice vibrations are taken into account.

3.
Nano Lett ; 11(8): 3099-107, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21770452

RESUMO

To increase efficiency of bulk heterojunctions for photovoltaic devices, the functional morphology of active layers has to be understood, requiring visualization and discrimination of materials with very similar characteristics. Here we combine high-resolution spectroscopic imaging using an analytical transmission electron microscope with nonlinear multivariate statistical analysis for classification of multispectral image data. We obtain a visual representation showing homogeneous phases of donor and acceptor, connected by a third composite phase, depending in its extent on the way the heterojunction is fabricated. For the first time we can correlate variations in nanoscale morphology determined by material contrast with measured solar cell efficiency. In particular we visualize a homogeneously blended phase, previously discussed to diminish charge separation in solar cell devices.


Assuntos
Microscopia Eletrônica de Transmissão/métodos , Polímeros/química , Análise Espectral
4.
Microsc Microanal ; 16(4): 386-92, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20598206

RESUMO

Lowering the electron energy in the transmission electron microscope allows for a significant improvement in contrast of light elements and reduces knock-on damage for most materials. If low-voltage electron microscopes are defined as those with accelerating voltages below 100 kV, the introduction of aberration correctors and monochromators to the electron microscope column enables Angstrom-level resolution, which was previously reserved for higher voltage instruments. Decreasing electron energy has three important advantages: (1) knock-on damage is lower, which is critically important for sensitive materials such as graphene and carbon nanotubes; (2) cross sections for electron-energy-loss spectroscopy increase, improving signal-to-noise for chemical analysis; (3) elastic scattering cross sections increase, improving contrast in high-resolution, zero-loss images. The results presented indicate that decreasing the acceleration voltage from 200 kV to 80 kV in a monochromated, aberration-corrected microscope enhances the contrast while retaining sub-Angstrom resolution. These improvements in low-voltage performance are expected to produce many new results and enable a wealth of new experiments in materials science.

5.
Microsc Microanal ; 12(6): 506-14, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19830943

RESUMO

We report on the sub-electron-volt-sub-angstrom microscope (SESAM), a high-resolution 200-kV FEG-TEM equipped with a monochromator and an in-column MANDOLINE filter. We report on recent results obtained with this instrument, demonstrating its performance (e.g., 87-meV energy resolution at 10-s exposure time, or a transmissivity of the energy filter of T1 ev = 11,000 nm2). New opportunities to do unique experiments that may advance the frontiers of microscopy in areas such as energy-filtered TEM, spectroscopy, energy-filtered electron diffraction and spectroscopic profiling are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA