RESUMO
Lead-free perovskite-inspired materials (PIMs) are gaining attention in optoelectronics due to their low toxicity and inherent air stability. Their wide bandgaps (≈2 eV) make them ideal for indoor light harvesting. However, the investigation of PIMs for indoor photovoltaics (IPVs) is still in its infancy. Herein, the IPV potential of a quaternary PIM, Cu2 AgBiI6 (CABI), is demonstrated upon controlling the film crystallization dynamics via additive engineering. The addition of 1.5 vol% hydroiodic acid (HI) leads to films with improved surface coverage and large crystalline domains. The morphologically-enhanced CABI+HI absorber leads to photovoltaic cells with a power conversion efficiency of 1.3% under 1 sun illumination-the highest efficiency ever reported for CABI cells and of 4.7% under indoor white light-emitting diode lighting-that is, within the same range of commercial IPVs. This work highlights the great potential of CABI for IPVs and paves the way for future performance improvements through effective passivation strategies.
RESUMO
Photoalignment materials, such as the azobenzene-based PAAD series studied here, are becoming increasingly important in liquid crystal-based optical devices and displays. Yet their properties and, in particular, their response to light, are still not fully understood. We investigate, experimentally and theoretically, the photoinduced birefringence, the order parameter and the formation of surface relief gratings, as well as the diffraction caused by them. We show that some of the azobenzene PAAD materials are suitable for the formation of surface relief gratings with high modulation depth, while others exhibit strong photoinduced birefringence. The two effects are inversely correlated: the stronger the surface relief grating is, the weaker is photoinduced birefringence. Analytical formulas based on the Raman-Nath approximation and numerical simulations of Maxwell's equations are used to quantify the diffraction caused by the induced diffraction gratings, showing excellent agreement between theory and experiment.
RESUMO
Thin-film organic distributed feedback (DFB) lasers processed with elastomeric polymers allow fabrication of flexible and continuously tunable coherent light sources. So far, the realized laser devices fall short on broad continuous tuning range. We demonstrate that the addition of plasticizers to the polymer matrix and the minimization of the thickness of the laser can reduce mechanical impact and, thus, extend the wavelength tuning range to the full gain range of the active medium. A contact-transfer method is used to transfer gently the ultra-thin membrane DFB laser to a silicone support. A continuous tuning of the laser wavelength up to 77 nm in the orange-red spectral range of a single laser dye was achieved by mechanical stretching of the supporting film with a DFB membrane laser on top.
RESUMO
The rise of stimuli-responsive polymers has brought about a wealth of materials for small-scale, wirelessly controlled soft-bodied robots. Thinking beyond conventional robotic mobilities already demonstrated in synthetic systems, such as walking, swimming and jumping, flying in air by dispersal, gliding, or even hovering is a frontier yet to be explored by responsive materials. The demanding requirements for actuator's performance, lightweight, and effective aerodynamic design underlie the grand challenges. Here, a soft matter-based porous structure capable of wind-assisted dispersal and lift-off/landing action under the control of a light beam is reported. The design is inspired by the seed of dandelion, resembling several biomimetic features, i.e., high porosity, lightweight, and separated vortex ring generation under a steady wind flow. Superior to its natural counterparts, this artificial seed is equipped with a soft actuator made of light-responsive liquid crystalline elastomer, which induces reversible opening/closing actions of the bristles upon visible light excitation. This shape-morphing enables manual tuning of terminal velocity, drag coefficient, and wind threshold for dispersal. Optically controlled wind-assisted lift-off and landing actions, and a light-induced local accumulation in descending structures are demonstrated. The results offer novel approaches for wirelessly controlled, miniatured devices that can passively navigate over a large aerial space.
RESUMO
Light-induced surface structuring of azobenzene-containing films allows for creation of complex surface relief patterns with varying heights, patterns which would be difficult to create using conventional lithography tools. In order to realize the full potential of these patternable surfaces, understanding their formation dynamics and response to different types of light fields is crucial. In the present work we introduce digital holographic microscopy (DHM) for real time, in-situ observation of surface-relief grating (SRG) formation on azobenzene-containing films. This instrument allows us to measure the surface topography of films while illuminating them with two individually controlled laser beams for creating periodically varying patterns. By utilizing the information of the grating formation dynamics, we combine multiple grating patterns to create pixels with wide gamut structural colors as well as blazed grating structures on the film surface. As long as the material behaviour is linear, any Fourier optical surface can be created utilizing this multiple patterning approach. The DHM instrument presented here has the potential for creating complex 3D surface reliefs with nanometric precision.