Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 23(21): 9832-9840, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37870305

RESUMO

On-surface synthesis has paved the way toward the fabrication and characterization of conjugated carbon-based molecular materials that exhibit π-magnetism such as triangulenes. Aza-triangulene, a nitrogen-substituted derivative, was recently shown to display rich on-surface chemistry, offering an ideal platform to investigate structure-property relations regarding spin-selective charge transfer and magnetic fingerprints. Herein, we study electronic changes upon fusion of single molecules into larger dimeric derivatives. We show that the closed-shell structure of aza-triangulene on Ag(111) leads to closed-shell dimers covalently coupled through sterically accessible carbon atoms. Meanwhile, its open-shell structure on Au(111) leads to coupling via atoms displaying a high spin density, resulting in symmetric or asymmetric products. Interestingly, whereas all dimers on Au(111) exhibit similar charge transfer properties, only asymmetric ones show magnetic fingerprints due to spin-selective charge transfer. These results expose clear relationships among molecular symmetry, charge transfer, and spin states of π-conjugated carbon-based nanostructures.

2.
J Am Chem Soc ; 145(18): 10333-10341, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37099608

RESUMO

The development of functional organic molecules requires structures of increasing size and complexity, which are typically obtained by the covalent coupling of smaller building blocks. Herein, with the aid of high-resolution scanning tunneling microscopy/spectroscopy and density functional theory, the coupling of a sterically demanded pentacene derivative on Au(111) into fused dimers connected by non-benzenoid rings was studied. The diradical character of the products was tuned according to the coupling section. In particular, the antiaromaticity of cyclobutadiene as the coupling motif and its position within the structure play a decisive role in shifting the natural orbital occupancies toward a stronger diradical electronic character. Understanding these structure-property relations is desirable not only for fundamental reasons but also for designing new complex and functional molecular structures.

3.
Nano Lett ; 22(1): 164-171, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34936370

RESUMO

Open-shell graphene nanoribbons have become promising candidates for future applications, including quantum technologies. Here, we characterize magnetic states hosted by chiral graphene nanoribbons (chGNRs). The substitution of a hydrogen atom at the chGNR edge by a ketone effectively adds one pz electron to the π-electron network, producing an unpaired π-radical. A similar scenario occurs for regular ketone-functionalized chGNRs in which one ketone is missing. Two such radical states can interact via exchange coupling, and we study those interactions as a function of their relative position, which includes a remarkable dependence on the chirality, as well as on the nature of the surrounding ribbon, that is, with or without ketone functionalization. Besides, we determine the parameters whereby this type of system with oxygen heteroatoms can be adequately described within the widely used mean-field Hubbard model. Altogether, we provide insight to both theoretically model and devise GNR-based nanostructures with tunable magnetic properties.

4.
J Am Chem Soc ; 144(10): 4522-4529, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35254059

RESUMO

Nitrogen heteroatom doping into a triangulene molecule allows tuning its magnetic state. However, the synthesis of the nitrogen-doped triangulene (aza-triangulene) has been challenging. Herein, we report the successful synthesis of aza-triangulene on the Au(111) and Ag(111) surfaces, along with their characterizations by scanning tunneling microscopy and spectroscopy in combination with density functional theory (DFT) calculations. Aza-triangulenes were obtained by reducing ketone-substituted precursors. Exposure to atomic hydrogen followed by thermal annealing and, when necessary, manipulations with the scanning probe afforded the target product. We demonstrate that on Au(111), aza-triangulene donates an electron to the substrate and exhibits an open-shell triplet ground state. This is derived from the different Kondo resonances of the final aza-triangulene product and a series of intermediates on Au(111). Experimentally mapped molecular orbitals match with DFT-calculated counterparts for a positively charged aza-triangulene. In contrast, aza-triangulene on Ag(111) receives an extra electron from the substrate and displays a closed-shell character. Our study reveals the electronic properties of aza-triangulene on different metal surfaces and offers an approach for the fabrication of new hydrocarbon structures, including reactive open-shell molecules.


Assuntos
Eletrônica , Ouro , Elétrons , Ouro/química , Nitrogênio/química , Propriedades de Superfície
5.
Phys Chem Chem Phys ; 23(18): 10845-10851, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33908516

RESUMO

The on-surface synthesis of non-planar nanographenes is a challenging task. Herein, with the aid of bond-resolving scanning tunneling microscopy (BRSTM) and density functional theory (DFT) calculations, we present a systematic study aiming at the fabrication of corannulene-based nanographenes via intramolecular cyclodehydrogenation on a Au(111) surface. The formation of non-planar targeted products is confirmed to be energetically unfavorable compared to the formation of planar/quasi-planar undesired competing monomer products. In addition, the activation of intermolecular coupling further inhibits the formation of the final targeted product. Although it was not possible to access the corannulene moiety by means of on-surface synthesis, partial cyclodehydrogenation of the molecular precursors was demonstrated.

6.
Angew Chem Int Ed Engl ; 60(14): 7752-7758, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33460518

RESUMO

Starphenes are attractive compounds due to their characteristic physicochemical properties that are inherited from acenes, making them interesting compounds for organic electronics and optics. However, the instability and low solubility of larger starphene homologs make their synthesis extremely challenging. Herein, we present a new strategy leading to pristine [16]starphene in preparative scale. Our approach is based on a synthesis of a carbonyl-protected starphene precursor that is thermally converted in a solid-state form to the neat [16]starphene, which is then characterised with a variety of analytical methods, such as 13 C CP-MAS NMR, TGA, MS MALDI, UV/Vis and FTIR spectroscopy. Furthermore, high-resolution STM experiments unambiguously confirm its expected structure and reveal a moderate electronic delocalisation between the pentacene arms. Nucleus-independent chemical shifts NICS(1) are also calculated to survey its aromatic character.

7.
Chemphyschem ; 20(18): 2305-2310, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31328365

RESUMO

Within the collection of surface-supported reactions currently accessible for the production of extended molecular nanostructures under ultra-high vacuum, Ullmann coupling has been the most successful in the controlled formation of covalent single C-C bonds. Particularly advanced control of this synthetic tool has been obtained by means of hierarchical reactivity, commonly achieved by the use of different halogen atoms that consequently display distinct activation temperatures. Here we report on the site-selective reactivity of certain carbon-halogen bonds. We use precursor molecules halogenated with bromine atoms at two non-equivalent carbon atoms and found that the Ullmann coupling occurs on Au(111) with a remarkable predilection for one of the positions. Experimental evidence is provided by means of scanning tunneling microscopy and core level photoemission spectroscopy, and a rationalized understanding of the observed preference is obtained from density functional theory calculations.

8.
Nanoscale ; 16(2): 734-741, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38086686

RESUMO

In the last few years we have observed a breakpoint in the development of graphene-derived technologies, such as liquid phase filtering and their application to electronics. In most of these cases, they imply exposure of the material to solvents and ambient moisture, either in the fabrication of the material or the final device. The present study demonstrates the sensitivity of graphene nanoribbon (GNR) zigzag edges to water, even in extremely low concentrations. We have addressed the unique reactivity of (3,1)-chiral GNR with moisture on Au(111). Water shows a reductive behaviour, hydrogenating the central carbon of the zigzag segments. By combining scanning tunnelling microscopy (STM) with simulations, we demonstrate how their reactivity reaches a thermodynamic limit when half of the unit cells are reduced, resulting in an alternating pattern of hydrogenated and pristine unit cells starting from the terminal segments. Once a quasi-perfect alternation is reached, the reaction stops regardless of the water concentration. The hydrogenated segments limit the electronic conjugation of the GNR, but the reduction can be reversed both by tip manipulation and annealing. Selective tip-induced dehydrogenation allowed the stabilization of radical states at the edges of the ribbons, while the annealing of the sample completely recovered the original, pristine GNR.

9.
J Phys Chem Lett ; 14(4): 947-953, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36688740

RESUMO

Activating the strong C-C σ-bond is a central problem in organic synthesis. Directly generating activated C centers by metalation of structures containing strained four-membered rings is one maneuver often employed in multistep syntheses. This usually requires high temperatures and/or precious transition metals. In this paper, we report an unprecedented C-C σ-bond activation at room temperature on Cu(111). By using bond-resolving scanning probe microscopy, we show the breaking of one of the C-C σ-bonds of a biphenylene derivative, followed by insertion of Cu from the substrate. Chemical characterization of the generated species was complemented by X-ray photoemission spectroscopy, and their reactivity was explained by density functional theory calculations. To gain further insight into this unique reactivity on other coinage metals, the reaction pathway on Ag(111) was also investigated and the results were compared with those on Cu(111). This study offers new synthetic routes that may be employed in the in situ generation of activated species for the on-surface synthesis of novel C-based nanostructures.

10.
Nat Commun ; 14(1): 6677, 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865684

RESUMO

Low dimensional carbon-based materials can show intrinsic magnetism associated to p-electrons in open-shell π-conjugated systems. Chemical design provides atomically precise control of the π-electron cloud, which makes them promising for nanoscale magnetic devices. However, direct verification of their spatially resolved spin-moment remains elusive. Here, we report the spin-polarization of chiral graphene nanoribbons (one-dimensional strips of graphene with alternating zig-zag and arm-chair boundaries), obtained by means of spin-polarized scanning tunnelling microscopy. We extract the energy-dependent spin-moment distribution of spatially extended edge states with π-orbital character, thus beyond localized magnetic moments at radical or defective carbon sites. Guided by mean-field Hubbard calculations, we demonstrate that electron correlations are responsible for the spin-splitting of the electronic structure. Our versatile platform utilizes a ferromagnetic substrate that stabilizes the organic magnetic moments against thermal and quantum fluctuations, while being fully compatible with on-surface synthesis of the rapidly growing class of nanographenes.

11.
Nat Chem ; 14(12): 1451-1458, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36163268

RESUMO

Carbon nanostructures with zigzag edges exhibit unique properties-such as localized electronic states and spins-with exciting potential applications. Such nanostructures however are generally synthesized under vacuum because their zigzag edges are unstable under ambient conditions: a barrier that must be surmounted to achieve their scalable integration into devices for practical purposes. Here we show two chemical protection/deprotection strategies, demonstrated on labile, air-sensitive chiral graphene nanoribbons. Upon hydrogenation, the chiral graphene nanoribbons survive exposure to air, after which they are easily converted back to their original structure by annealing. We also approach the problem from another angle by synthesizing a form of the chiral graphene nanoribbons that is functionalized with ketone side groups. This oxidized form is chemically stable and can be converted to the pristine hydrocarbon form by hydrogenation and annealing. In both cases, the deprotected chiral graphene nanoribbons regain electronic properties similar to those of the pristine nanoribbons. We believe both approaches may be extended to other graphene nanoribbons and carbon-based nanostructures.

12.
ACS Nano ; 15(3): 4937-4946, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33630588

RESUMO

The combination of alkyne and halogen functional groups in the same molecule allows for the possibility of many different reactions when utilized in on-surface synthesis. Here, we use a pyrene-based precursor with both functionalities to examine the preferential reaction pathway when it is heated on an Au(111) surface. Using high-resolution bond-resolving scanning tunneling microscopy, we identify multiple stable intermediates along the prevailing reaction pathway that initiate with a clearly dominant Glaser coupling, together with a multitude of other side products. Importantly, control experiments with reactants lacking the halogen functionalization reveal the Glaser coupling to be absent and instead show the prevalence of non-dehydrogenative head-to-head alkyne coupling. We perform scanning tunneling spectroscopy on a rich variety of the product structures obtained in these experiments, providing key insights into the strong dependence of their HOMO-LUMO gaps on the nature of the intramolecular coupling. A clear trend is found of a decreasing gap that is correlated with the conversion of triple bonds to double bonds via hydrogenation and to higher levels of cyclization, particularly with nonbenzenoid product structures. We rationalize each of the studied cases.

13.
Nanoscale Adv ; 3(8): 2351-2358, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36133758

RESUMO

Combining on-surface synthetic methods with the power of scanning tunneling microscopy to characterize novel materials at the single molecule level, we show how to steer the reactivity of one anthracene-based precursor towards different product nanostructures. Whereas using a Au(111) surface with three-fold symmetry results in the dominant formation of a starphene derivative, the two-fold symmetry of a reconstructed Au(110) surface allows the selective growth of non-benzenoid linear conjugated polymers. We further assess the electronic properties of each of the observed product structures via tunneling spectroscopy and DFT calculations, altogether advancing the synthesis and characterization of molecular structures of notable scientific interest that have been only scarcely investigated to date, as applies both to starphenes and to non-benzenoid conjugated polymers.

14.
ACS Nano ; 15(10): 16552-16561, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34633170

RESUMO

The advent of on-surface chemistry under vacuum has vastly increased our capabilities to synthesize carbon nanomaterials with atomic precision. Among the types of target structures that have been synthesized by these means, graphene nanoribbons (GNRs) have probably attracted the most attention. In this context, the vast majority of GNRs have been synthesized from the same chemical reaction: Ullmann coupling followed by cyclodehydrogenation. Here, we provide a detailed study of the growth process of five-atom-wide armchair GNRs starting from dibromoperylene. Combining scanning probe microscopy with temperature-dependent XPS measurements and theoretical calculations, we show that the GNR growth departs from the conventional reaction scenario. Instead, precursor molecules couple by means of a concerted mechanism whereby two covalent bonds are formed simultaneously, along with a concomitant dehydrogenation. Indeed, this alternative reaction path is responsible for the straight GNR growth in spite of the initial mixture of reactant isomers with irregular metal-organic intermediates that we find. The provided insight will not only help understanding the reaction mechanisms of other reactants but also serve as a guide for the design of other precursor molecules.

15.
ACS Nano ; 15(3): 5610-5617, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33656868

RESUMO

Nanostructured graphene has been widely studied in recent years due to the tunability of its electronic properties and its associated interest for a variety of fields, such as nanoelectronics and spintronics. However, many of the graphene nanostructures of technological interest are synthesized under ultrahigh vacuum, and their limited stability as they are brought out of such an inert environment may compromise their applicability. In this study, a combination of bond-resolving scanning probe microscopy (BR-SPM), along with theoretical calculations, has been employed to study (3,1)-chiral graphene nanoribbons [(3,1)-chGNRs] that were synthesized on a Au(111) surface and then exposed to oxidizing environments. Exposure to the ambient atmosphere, along with the required annealing treatment to desorb a sufficiently large fraction of contaminants to allow for its postexposure analysis by BR-SPM, revealed a significant oxidation of the ribbons, with a dramatically disruptive effect on their electronic properties. More controlled experiments avoiding high temperatures and exposing the ribbons only to low pressures of pure oxygen show that also under these more gentle conditions the ribbons are oxidized. From these results, we obtain additional insights into the preferential reaction sites and the nature of the main defects that are caused by oxygen. We conclude that graphene nanoribbons with zigzag edge segments require forms of protection before they can be used in or transferred through ambient conditions.

16.
Chem Sci ; 11(21): 5441-5446, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-34094071

RESUMO

Fine management of chiral processes on solid surfaces has progressed over the years, yet still faces the need for the controlled and selective production of advanced chiral materials. Here, we report on the use of enantiomerically enriched molecular building blocks to demonstrate the transmission of their intrinsic chirality along a sequence of on-surface reactions. Triggered by thermal annealing, the on-surface reactions induced in this experiment involve firstly the coupling of the chiral reactants into chiral polymers and subsequently their transformation into planar prochiral graphene nanoribbons. Our study reveals that the axial chirality of the reactant is not only transferred to the polymers, but also to the planar chirality of the graphene nanoribbon end products. Such chirality transfer consequently allows, starting from adequate enantioenriched reactants, for the controlled production of chiral and prochiral organic nanoarchitectures with pre-defined handedness.

17.
ACS Nano ; 14(4): 4499-4508, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32101402

RESUMO

We extensively characterize the electronic structure of ultranarrow graphene nanoribbons (GNRs) with armchair edges and zigzag termini that have five carbon atoms across their width (5-AGNRs), as synthesized on Au(111). Scanning tunneling spectroscopy measurements on the ribbons, recorded on both the metallic substrate and a decoupling NaCl layer, show well-defined dispersive bands and in-gap states. In combination with theoretical calculations, we show how these in-gap states are topological in nature and localized at the zigzag termini of the nanoribbons. In addition to rationalizing the driving force behind the topological class selection of 5-AGNRs, we also uncover the length-dependent behavior of these end states which transition from singly occupied spin-split states to a closed-shell form as the ribbons become shorter. Finally, we demonstrate the magnetic character of the end states via transport experiments in a model two-terminal device structure in which the ribbons are suspended between the scanning probe and the substrate that both act as leads.

18.
J Phys Chem Lett ; 11(15): 5902-5907, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32633516

RESUMO

We report an on-surface synthesis of five-membered carbon ring via a [4 + 1] annulation reaction, starting from a simple terminal alkynyl bromide, 4-(bromoethynyl)biphenyl, on Ag(110). The combination of scanning tunneling microscopy (STM), synchrotron radiation photoemission spectroscopy (SRPES), and density functional theory (DFT) calculations unravel the reaction pathway and mechanism. Three basic reaction steps are involved, successively including the formation of alkynyl-Ag-alkynyl bridged organometallic dimer, the generation of alkylidene carbene intermediate, and the final [4 + 1] annulation involving a hydrogen transfer step.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA