Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nature ; 609(7929): 1048-1055, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36104563

RESUMO

Telomeres, the ends of eukaryotic chromosomes, play pivotal parts in ageing and cancer and are targets of DNA damage and the DNA damage response1-5. Little is known about the structure of telomeric chromatin at the molecular level. Here we used negative stain electron microscopy and single-molecule magnetic tweezers to characterize 3-kbp-long telomeric chromatin fibres. We also obtained the cryogenic electron microscopy structure of the condensed telomeric tetranucleosome and its dinucleosome unit. The structure displayed close stacking of nucleosomes with a columnar arrangement, and an unusually short nucleosome repeat  length that comprised about 132 bp DNA wound in a continuous superhelix around histone octamers. This columnar structure is primarily stabilized by the H2A carboxy-terminal and histone amino-terminal tails in a synergistic manner. The columnar conformation results in exposure of the DNA helix, which may make it susceptible to both DNA damage and the DNA damage response. The conformation also exists in an alternative open state, in which one nucleosome is unstacked and flipped out, which exposes the acidic patch of the histone surface. The structural features revealed in this work suggest mechanisms by which protein factors involved in telomere maintenance can access telomeric chromatin in its compact form.


Assuntos
Cromatina , DNA , Histonas , Conformação Molecular , Telômero , Cromatina/química , Cromatina/genética , Cromatina/ultraestrutura , DNA/química , DNA/metabolismo , DNA/ultraestrutura , Dano ao DNA , Histonas/química , Histonas/metabolismo , Histonas/ultraestrutura , Humanos , Microscopia Eletrônica , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/ultraestrutura , Imagem Individual de Molécula , Telômero/química , Telômero/genética , Telômero/ultraestrutura
2.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338990

RESUMO

The MAPK p38α was proposed to be a prominent promoter of skeletal muscle aging. The skeletal muscle tissue is composed of various muscle types, and it is not known if p38α is associated with aging in all of them. It is also not known if p38α is associated with aging of other tissues. JNK and ERK were also proposed to be associated with aging of several tissues. Nevertheless, the pattern of p38α, JNK, and ERK activity during aging was not documented. Here, we documented the levels of phosphorylated/active p38α, Erk1/2, and JNKs in several organs as well as the soleus, tibialis anterior, quadriceps, gastrocnemius, and EDL muscles of 1-, 3-, 6-, 13-, 18-, and 24-month-old mice. We report that in most tissues and skeletal muscles, the MAPKs' activity does not change in the course of aging. In most tissues and muscles, p38α is in fact active at younger ages. The quadriceps and the lungs are exceptions, where p38α is significantly active only in mice 13 months old or older. Curiously, levels of active JNK and ERKs are also elevated in aged lungs and quadriceps. RNA-seq analysis of the quadriceps during aging revealed downregulation of proteins related to the extra-cellular matrix (ECM) and ERK signaling. A panel of mRNAs encoding cell cycle inhibitors and senescence-associated proteins, considered to be aging markers, was not found to be elevated. It seems that the pattern of MAPKs' activation in aging, as well as expression of known 'aging' components, are tissue- and muscle type-specific, supporting a notion that the process of aging is tissue- and even cell-specific.


Assuntos
Sistema de Sinalização das MAP Quinases , Músculo Esquelético , Camundongos , Animais , Fosforilação , Sistema de Sinalização das MAP Quinases/fisiologia , Transdução de Sinais , Envelhecimento/genética
3.
Nucleic Acids Res ; 48(10): 5383-5396, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32374876

RESUMO

Telomeres protect the ends of our chromosomes and are key to maintaining genomic integrity during cell division and differentiation. However, our knowledge of telomeric chromatin and nucleosome structure at the molecular level is limited. Here, we aimed to define the structure, dynamics as well as properties in solution of the human telomeric nucleosome. We first determined the 2.2 Å crystal structure of a human telomeric nucleosome core particle (NCP) containing 145 bp DNA, which revealed the same helical path for the DNA as well as symmetric stretching in both halves of the NCP as that of the 145 bp '601' NCP. In solution, the telomeric nucleosome exhibited a less stable and a markedly more dynamic structure compared to NCPs containing DNA positioning sequences. These observations provide molecular insights into how telomeric DNA forms nucleosomes and chromatin and advance our understanding of the unique biological role of telomeres.


Assuntos
Nucleossomos/química , Telômero/química , Cristalografia por Raios X , DNA/química , Humanos , Modelos Moleculares
4.
Biophys J ; 119(11): 2326-2334, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33121944

RESUMO

Chromatin compaction and internal motion are fundamental aspects of gene expression regulation. Here, we have investigated chromatin fibers comprising recombinant histone octamers reconstituted with double-stranded bacteriophage T4-DNA. The size of the fibers approaches the typical size of genomic topologically associated domains. Atomic force and fluorescence (correlation) microscopy have been used to assess the structural organization, histone-induced compaction, and internal motion. In particular, the fibers are stretched on arrays of nanochannels, each channel with a diameter of 60 or 125 nm. Major intrafiber segregation and fast internal fluctuations are observed. Full compaction was only achieved by triggering an attractive nucleosome interaction through the addition of magnesium cations. Besides compaction, histone complexation results in a dramatic decrease in the fiber's relaxation time. The relaxation times are similar to those of naked DNA with a comparable stretch, which indicates that internal motion is governed by the dynamics of uncompressed linker strands. Furthermore, the main reorganization process is association-dissociation of individually compacted regions. We surmise that the modulation of chromatin's internal motion by histone complexation might have implications for transcriptional bursting.


Assuntos
Cromatina , Nucleossomos , Bacteriófago T4 , DNA , Histonas
5.
Soft Matter ; 16(18): 4366-4372, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32253414

RESUMO

Highly compacted chromatin, a complex of DNA with cationic histone proteins, is found in the nucleus of eukaryotic cells in an environment with a high concentration of macromolecular species, many of which possess a negative charge. In the majority of previous studies, however, these crowding conditions were experimentally modelled using neutral synthetic macromolecules such as polyethylene glycol (PEG). Despite the importance of the crowding agent charge in the condensation process of chromatin, to the best of our knowledge, the behavior of chromatin under conditions of anionic protein crowding has not been studied. Here, compaction of nearly megabase-long chromatin in the presence of the anionic globular protein BSA was investigated by single-molecule fluorescent microscopy (FM). We demonstrate different effects of anionic macromolecular crowders (MMCs) on DNA and chromatin, compared to neutral MMCs. While DNA molecules undergo gradual compaction into a globular form in the presence of ca. 20% w/v of BSA, chromatin fibres complete coil to globule transition at a much lower concentration of BSA (ca. 5% w/v). Furthermore, at higher concentrations of BSA in solution (>5% w/v), chromatin fibres self-associate and form large spherical or fibrillar supramolecular microstructures characterized by a high colloidal stability and dynamic intermolecular fluctuations. Formation of such self-organized colloids from chromatin is universal and characteristic of chromatin fibres of various lengths. Our results highlight the hitherto underappreciated effect of anionic MMC environment on chromatin higher-order structures that may play an important role in self-organization of chromatin in vivo.


Assuntos
Cromatina/metabolismo , DNA/metabolismo , Soroalbumina Bovina/metabolismo , Imagem Individual de Molécula , Ânions , Coloides , DNA/química , Eucariotos/metabolismo , Histonas/metabolismo , Humanos , Microscopia de Fluorescência , Proteínas Nucleares/metabolismo , Nucleossomos/metabolismo , Soroalbumina Bovina/química
6.
Nucleic Acids Res ; 46(2): 635-649, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29145649

RESUMO

To gain insight into the conformational properties and compaction of megabase-long chromatin molecules, we reconstituted chromatin from T4 phage DNA (165 kb) and recombinant human histone octamers (HO). The unimolecular compaction, induced by divalent Mg2+ or tetravalent spermine4+ cations, studied by single-molecule fluorescence microscopy (FM) and dynamic light scattering (DLS) techniques, resulted in the formation of 250-400 nm chromatin condensates. The compaction on this scale of DNA size is comparable to that of chromatin topologically associated domains (TAD) in vivo. Variation of HO loading revealed a number of unique features related to the efficiency of chromatin compaction by multivalent cations, the mechanism of compaction, and the character of partly compact chromatin structures. The observations may be relevant for how DNA accessibility in chromatin is maintained. Compaction of saturated chromatin, in turn, is accompanied by an intra-chain segregation at the level of single chromatin molecules, suggesting an intriguing scenario of selective activation/deactivation of DNA as a result of chromatin fiber heterogeneity due to the nucleosome positioning. We suggest that this chromatin, reconstituted on megabase-long DNA because of its large size, is a useful model of eukaryotic chromatin.


Assuntos
Cátions/química , Cromatina/química , DNA Viral/química , Histonas/química , Imagem Individual de Molécula/métodos , Bacteriófago T4/genética , Cátions/metabolismo , Cromatina/genética , Cromatina/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Conformação de Ácido Nucleico , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo
7.
Biophys J ; 114(10): 2326-2335, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29729833

RESUMO

The megabase-sized length of chromatin is highly relevant to the state of chromatin in vivo, where it is subject to a highly crowded environment and is organized in topologically associating domains of similar dimension. We developed an in vitro experimental chromatin model system reconstituted from T4 DNA (approximately 166 kbp) and histone octamers and studied the monomolecular compaction of this megabase-sized chromatin fiber under the influence of macromolecular crowding. We used single-molecule fluorescence microscopy and observed compaction in aqueous solutions containing poly(ethylene glycol) in the presence of monovalent (Na+ and K+) and divalent (Mg2+) cations. Both DNA and chromatin demonstrated compaction under comparable conditions in the presence of poly(ethylene glycol) and Na+ or Mg2+ salt. However, the mechanism of the compaction changed from a first-order phase transition for DNA to a continuous folding for megabase-sized chromatin fibers. A more efficient and pronounced chromatin compaction was observed in the presence of Na+ compared to K+. A flow-stretching technique to unfold DNA and chromatin coils was used to gain further insight into the morphology of partially folded chromatin fibers. The results revealed a distribution of partially folded chromatin fibers. This variability is likely the result of the heterogeneous distribution of nucleosomes on the DNA chain. The packaging of DNA in the form of chromatin in the crowded nuclear environment appears essential to ensure gradual conformational changes of DNA.


Assuntos
Cromatina/metabolismo , DNA Viral/metabolismo , Bacteriófago T4 , Cromatina/efeitos dos fármacos , Histonas/metabolismo , Humanos , Magnésio/farmacologia , Nucleossomos/efeitos dos fármacos , Nucleossomos/metabolismo , Polietilenoglicóis/farmacologia , Sódio/farmacologia
8.
Soft Matter ; 14(45): 9096-9106, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30215440

RESUMO

In eukaryotes, the compaction of chromatin fibers composed of nucleosome core particles (NCPs) connected by a linker DNA into chromosomes is highly efficient; however, the underlying folding mechanisms remain elusive. We used small angle X-ray scattering (SAXS) to investigate the influence of linker DNA length on the local structure and the interparticle interactions of the NCPs. In the presence of the linker DNA of 30 bp or less in length, the results suggest partial unwrapping of nucleosomal DNA on the NCP irrespective of the linker DNA length. Moreover, the presence of 15 bp linker DNA alleviated the electrostatic repulsion between the NCPs and prevented the formation of an ordered columnar hexagonal phase, demonstrating that the linker DNA plays an active role in chromatin folding.


Assuntos
DNA/química , DNA/metabolismo , Nucleossomos/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico
9.
Biophys J ; 110(8): 1720-1731, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27119633

RESUMO

The nucleosome core particle (NCP) is the basic building block of chromatin. Nucleosome-nucleosome interactions are instrumental in chromatin compaction, and understanding NCP self-assembly is important for understanding chromatin structure and dynamics. Recombinant NCPs aggregated by multivalent cations form various ordered phases that can be studied by x-ray diffraction (small-angle x-ray scattering). In this work, the effects on the supramolecular structure of aggregated NCPs due to lysine histone H4 tail acetylations, histone H2A mutations (neutralizing the acidic patch of the histone octamer), and the removal of histone tails were investigated. The formation of ordered mainly hexagonal columnar NCP phases is in agreement with earlier studies; however, the highly homogeneous recombinant NCP systems used in this work display a more compact packing. The long-range order of the NCP columnar phase was found to be abolished or reduced by acetylation of the H4 tails, acidic patch neutralization, and removal of the H3 and H2B tails. Loss of nucleosome stacking upon removal of the H3 tails in combination with other tails was observed. In the absence of the H2A tails, the formation of an unknown highly ordered phase was observed.


Assuntos
Histonas/química , Histonas/metabolismo , Nucleossomos/metabolismo , Acetilação , Animais , Histonas/genética , Mutação , Domínios Proteicos , Xenopus laevis
10.
Nucleic Acids Res ; 40(6): 2808-21, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22563605

RESUMO

We report a systematic study of the condensation of plasmid DNA by oligocations with variation of the charge, Z, from +3 to +31. The oligocations include a series of synthetic linear ε-oligo(L-lysines), (denoted εKn, n = 3­10, 31; n is the number of lysines with the ligand charge Z = n+1) and branched α-substituted homologues of εK10: εYK10, εLK10 (Z = +11); εRK10, εYRK10 and εLYRK10 (Z = +21). Data were obtained by light scattering, UV absorption monitored precipitation assay and isothermal titration calorimetry in a wide range concentrations of DNA and monovalent salt (KCl, CKCl). The dependence of EC50 (ligand concentration at the midpoint of DNA condensation) on C(KCl) shows the existence of a salt-independent regime at low C(KCl) and a salt-dependent regime with a steep rise of EC50 with increase of C(KCl). Increase of the ligand charge shifts the transition from the salt-independent to salt-dependent regime to higher C(KCl). A novel and simple relationship describing the EC50 dependence on DNA concentration, charge of the ligand and the salt-dependent dissociation constant of the ligand­DNA complex is derived. For the ε-oligolysines εK6­ÎµK10, the experimental dependencies of EC50 on C(KCl) and Z are well-described by an equation with a common set of parameters. Implications from our findings for understanding DNA condensation in chromatin are discussed.


Assuntos
DNA/química , Polilisina/química , Calorimetria , Precipitação Química , Ligantes , Luz , Tamanho da Partícula , Cloreto de Potássio/química , Espalhamento de Radiação , Eletricidade Estática
11.
Biochim Biophys Acta ; 1818(7): 1794-800, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22503921

RESUMO

The combination of cationic lipids with cationic peptides and DNA vectors can produce synergistic effects in gene delivery to eukaryotic cells. Binary complexes of cationic lipids with DNA are well-studied whereas little information is available about the structure of the ternary lipid/peptide/DNA (LPD) complexes and mechanisms defining DNA protection and delivery. Here we use synchrotron small angle X-ray scattering and dynamic light scattering zeta-potential measurements to determine structure and the net charge of supramolecular aggregates of complexes in mixtures of plasmid DNA, cationic liposomes formed from DOTAP, plus a linear cationic epsilon-oligolysine with the pendant alpha-amino acids Leu-Tyr-Arg (LYR), epsilon-(LYR)K10. These ternary complexes display multilamellar structures with relatively constant separation between DOTAP bilayers, accommodating a hydrated monolayer of parallel DNA rods. The DNA-DNA distance in the complexes varies as a function of the net positive to negative (lipid + peptide)/DNA charge ratio. An explanation for the observed dependence of DNA-DNA distance on charge ratio was proposed based on general polyelectrolyte properties of non-stoichiometric polycation-DNA mixtures.


Assuntos
DNA/química , Lipídeos/química , Substâncias Macromoleculares/química , Peptídeos/química , Sequência de Aminoácidos , Cátions/química , DNA/genética , Condutividade Elétrica , Ácidos Graxos Monoinsaturados/química , Corantes Fluorescentes/química , Vetores Genéticos/química , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/genética , Modelos Moleculares , Estrutura Molecular , Fosfatidiletanolaminas/química , Plasmídeos/química , Plasmídeos/genética , Polilisina/química , Compostos de Amônio Quaternário/química , Espalhamento a Baixo Ângulo , Síncrotrons , Transfecção/métodos , Difração de Raios X
12.
Biomacromolecules ; 13(12): 4146-57, 2012 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-23130629

RESUMO

In this work we have investigated the structures of aggregates formed in model systems of dilute aqueous mixtures of "model chromatin" consisting of either recombinant nucleosome core particles (NCPs) or nucleosome arrays consisting of 12 NCPs connected with 30 bp linker DNA, and liposomes made from different mixtures of cationic and zwitterionic lipids, 1,2-dioleoyl-3-trimethylammonium-propane chloride salt (DOTAP) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). The aggregates formed were characterized using different optical microscopy methods and small-angle X-ray scattering (SAXS), and the results are discussed in terms of the competing intermolecular interactions among the components. For a majority of the samples, the presence of lamellar structures could be identified. In samples with high fractions of DOTAP in the liposomes, well-defined lamellar structures very similar to those formed by the corresponding lipid mixtures and DNA alone (i.e., without histone proteins) were observed; in these aggregates, the histones are expelled from the model chromatin. The findings suggest that, with liposomes containing large fractions of cationic lipid, the dominating driving force for aggregation is the increase in translational entropy from the release of counterions, whereas with lower fractions of the cationic lipid, the entropy of mixing of the lipids within the bilayers results in a decreased DNA-lipid attraction.


Assuntos
Cátions/química , Montagem e Desmontagem da Cromatina , Cromatina/química , DNA/química , Bicamadas Lipídicas/química , Ácidos Graxos Monoinsaturados/metabolismo , Histonas/química , Lipossomos/química , Microscopia Confocal , Microscopia de Fluorescência , Nanotecnologia/métodos , Nucleossomos/química , Fosfatidilcolinas/metabolismo , Compostos de Amônio Quaternário/metabolismo , Proteínas Recombinantes/química , Espalhamento a Baixo Ângulo , Raios X
13.
Metabolites ; 12(9)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36144187

RESUMO

In the case of many bacteria, such as Escherichia coli, the composition of lipid molecules, termed the lipidome, temporally adapts to different environmental conditions and thus modifies membrane properties to permit growth and survival. Details of the relationship between the environment and lipidome composition are lacking, particularly for growing cultures under either favourable or under stress conditions. Here, we highlight compositional lipidome changes by describing the dynamics of molecular species throughout culture-growth phases. We show a steady cyclopropanation of fatty acyl chains, which acts as a driver for lipid diversity. There is a bias for the cyclopropanation of shorter fatty acyl chains (FA 16:1) over longer ones (FA 18:1), which likely reflects a thermodynamic phenomenon. Additionally, we observe a nearly two-fold increase in saturated fatty acyl chains in response to the presence of ampicillin and chloramphenicol, with consequences for membrane fluidity and elasticity, and ultimately bacterial stress tolerance. Our study provides the detailed quantitative lipidome composition of three E. coli strains across culture-growth phases and at the level of the fatty acyl chains and provides a general reference for phospholipid composition changes in response to perturbations. Thus, lipidome diversity is largely transient and the consequence of lipid synthesis and cyclopropanation.

14.
Sci Rep ; 12(1): 15558, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114220

RESUMO

Large topologically associated domains (TADs) contain irregularly spaced nucleosome clutches, and interactions between such clutches are thought to aid the compaction of these domains. Here, we reconstituted TAD-sized chromatin fibers containing hundreds of nucleosomes on native source human and lambda-phage DNA and compared their mechanical properties at the single-molecule level with shorter '601' arrays with various nucleosome repeat lengths. Fluorescent imaging showed increased compaction upon saturation of the DNA with histones and increasing magnesium concentration. Nucleosome clusters and their structural fluctuations were visualized in confined nanochannels. Force spectroscopy revealed not only similar mechanical properties of the TAD-sized fibers as shorter fibers but also large rupture events, consistent with breaking the interactions between distant clutches of nucleosomes. Though the arrays of native human DNA, lambda-phage and '601' DNA featured minor differences in reconstitution yield and nucleosome stability, the fibers' global structural and mechanical properties were similar, including the interactions between nucleosome clutches. These single-molecule experiments quantify the mechanical forces that stabilize large TAD-sized chromatin domains consisting of disordered, dynamically interacting nucleosome clutches and their effect on the condensation of large chromatin domains.


Assuntos
Histonas , Nucleossomos , Cromatina , DNA/química , Histonas/química , Humanos , Magnésio
15.
Nucleic Acids Res ; 37(21): 7137-50, 2009 11.
Artigo em Inglês | MEDLINE | ID: mdl-19773427

RESUMO

We report a systematic study of the condensation of plasmid DNA by oligocations with variation of the charge, Z, from +3 to +31. The oligocations include a series of synthetic linear epsilon-oligo(l-lysines), (denoted epsilonKn, n = 3-10, 31; n is the number of lysines equal to the ligand charge) and branched alpha-substituted homologues of epsilonK10: epsilonYK10, epsilonLK10 (Z = +10); epsilonRK10, epsilonYRK10 and epsilonLYRK10 (Z = +20). Data were obtained by light scattering, UV absorption monitored precipitation assay and isothermal titration calorimetry in a wide range concentrations of DNA and monovalent salt (KCl, C(KCl)). The dependence of EC(50) (ligand concentration at the midpoint of DNA condensation) on C(KCl) shows the existence of a salt-independent regime at low C(KCl) and a salt-dependent regime with a steep rise of EC(50) with increase of C(KCl). Increase of the ligand charge shifts the transition from the salt-independent to salt-dependent regime to higher C(KCl). A novel and simple relationship describing the EC(50) dependence on DNA concentration, charge of the ligand and the salt-dependent dissociation constant of the ligand-DNA complex is derived. For the epsilon-oligolysines epsilonK3-epsilonK10, the experimental dependencies of EC(50) on C(KCl) and Z are well-described by an equation with a common set of parameters. Implications from our findings for understanding DNA condensation in chromatin are discussed.


Assuntos
DNA/química , Polilisina/química , Calorimetria , Cátions/química , Precipitação Química , Ligantes , Luz , Tamanho da Partícula , Plasmídeos/genética , Cloreto de Potássio/química , Espalhamento de Radiação , Eletricidade Estática
16.
Sci Rep ; 11(1): 380, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33432055

RESUMO

Linker histones play essential roles in the regulation and maintenance of the dynamic chromatin structure of higher eukaryotes. The influence of human histone H1.0 on the nucleosome structure and biophysical properties of the resulting chromatosome were investigated and compared with the 177-bp nucleosome using Cryo-EM and SAXS. The 4.5 Å Cryo-EM chromatosome structure showed that the linker histone binds at the nucleosome dyad interacting with both linker DNA arms but in a tilted manner leaning towards one of the linker sides. The chromatosome is laterally compacted and rigid in the dyad and linker DNA area, in comparison with the nucleosome where linker DNA region is more flexible and displays structural variability. In solution, the chromatosomes appear slightly larger than the nucleosomes, with the volume increase compared to the bound linker histone, according to solution SAXS measurements. SAXS X-ray diffraction characterisation of Mg-precipitated samples showed that the different shapes of the 177 chromatosome enabled the formation of a highly ordered lamello-columnar phase when precipitated by Mg2+, indicating the influence of linker histone on the nucleosome stacking. The biological significance of linker histone, therefore, may be affected by the change in the polyelectrolyte and DNA conformation properties of the chromatosomes, in comparison to nucleosomes.


Assuntos
Cromatina/metabolismo , Histonas/fisiologia , Nucleossomos/química , Sequência de Bases , Cromatina/química , DNA/química , DNA/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Nucleossomos/metabolismo , Ligação Proteica , Multimerização Proteica/fisiologia , Estrutura Quaternária de Proteína , Espalhamento a Baixo Ângulo , Difração de Raios X
17.
Langmuir ; 26(15): 12488-92, 2010 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-20593781

RESUMO

Complexes formed in mixtures of cationic liposomes of varying charge density and nucleosome core particles (NCPs) or nucleosome arrays have been characterized. Under most of the conditions studied, the lipids and NCPs or arrays formed lamellar structures similar to those obtained with the liposomes and pure DNA. Thus, the dissociation of DNA from the NCP or nucleosome array and the formation of a DNA-lipid complex is thermodynamically favored, which can likely be ascribed mainly to the gain in entropy on release of the small counterions. Only at very low liposome charge densities are there indications that the NCPs/arrays do not dissociate upon interaction with the lipid bilayers. The reported results can serve as a valuable reference point in investigations of biologically more relevant systems.


Assuntos
Cátions/química , Cromatina/química , DNA/química , Bicamadas Lipídicas/química , Modelos Moleculares
18.
Biochim Biophys Acta Biomembr ; 1862(2): 183150, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31830464

RESUMO

The outer membrane (OM) is the first defence for Gram-negative bacteria against their environments making it important in strain improvement for sustainable biobutanol production. While modifying the OM structure using chemical additives could enhance microbial viability, there are currently no model systems that accurately describe OM responses to butanol. Here, we experimentally determined that reducing the lipopolysaccharide (LPS) core length and charge increased Escherichia coli sensitivity to butanol. In silico models were built to describe how OM structure contributes to its ability to withstand butanol under conditions of exposure and production. Consistent with experiments, resistance to ingress of butanol into OMs correlates with both core length and charge, where a lower charge density is more conducive to butanol assimilation. The core length and branching correlate with the lateral spacing of the lipids, suggestive of a role of them in maintaining OM fluidity. In contrast to systems with short-length LPS cores, butanol intercalation into OMs with longer LPS cores increases membrane order and rigidity, which might be due to their more porous internal structure. These findings will assist the development of more butanol-tolerant biobutanol-producing bacteria, where thicker, more compact and less polar LPS-core surfaces reinforce the integrity of OMs and further improve resilience in extreme environments.


Assuntos
Butanóis/química , Membrana Celular/efeitos dos fármacos , Lipopolissacarídeos/química , Butanóis/farmacologia , Membrana Celular/química , Escherichia coli/efeitos dos fármacos , Fluidez de Membrana , Simulação de Dinâmica Molecular
19.
Adv Colloid Interface Sci ; 205: 221-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24055029

RESUMO

Recently, great progress has been achieved in development of a wide variety of formulations for gene delivery in vitro and in vivo, which include lipids, peptides and DNA (LPD). Additionally, application of natural histone-DNA complexes (chromatin) in combination with transfection lipids has been suggested as a potential route for gene delivery (chromofection). However, the thermodynamic mechanisms responsible for formation of the ternary lipid-peptide-DNA supramolecular structures have rarely been analyzed. Using recent experimental studies on LPD complexes (including mixtures of chromatin with cationic lipids) and general polyelectrolyte theory, we review and analyze the major determinants defining the internal structure, particle composition and size, surface charge and ultimately, transfection properties of the LPD formulations.


Assuntos
DNA/química , Técnicas de Transferência de Genes , Lipídeos/química , Peptídeos/química , Animais , Humanos , Tamanho da Partícula , Eletricidade Estática , Propriedades de Superfície , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA