Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(2): 021802, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37505961

RESUMO

This Letter reports one of the most precise measurements to date of the antineutrino spectrum from a purely ^{235}U-fueled reactor, made with the final dataset from the PROSPECT-I detector at the High Flux Isotope Reactor. By extracting information from previously unused detector segments, this analysis effectively doubles the statistics of the previous PROSPECT measurement. The reconstructed energy spectrum is unfolded into antineutrino energy and compared with both the Huber-Mueller model and a spectrum from a commercial reactor burning multiple fuel isotopes. A local excess over the model is observed in the 5-7 MeV energy region. Comparison of the PROSPECT results with those from commercial reactors provides new constraints on the origin of this excess, disfavoring at 2.0 and 3.7 standard deviations the hypotheses that antineutrinos from ^{235}U are solely responsible and noncontributors to the excess observed at commercial reactors, respectively.

2.
Phys Rev Lett ; 128(8): 081801, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35275656

RESUMO

A joint determination of the reactor antineutrino spectra resulting from the fission of ^{235}U and ^{239}Pu has been carried out by the Daya Bay and PROSPECT Collaborations. This Letter reports the level of consistency of ^{235}U spectrum measurements from the two experiments and presents new results from a joint analysis of both data sets. The measurements are found to be consistent. The combined analysis reduces the degeneracy between the dominant ^{235}U and ^{239}Pu isotopes and improves the uncertainty of the ^{235}U spectral shape to about 3%. The ^{235}U and ^{239}Pu antineutrino energy spectra are unfolded from the jointly deconvolved reactor spectra using the Wiener-SVD unfolding method, providing a data-based reference for other reactor antineutrino experiments and other applications. This is the first measurement of the ^{235}U and ^{239}Pu spectra based on the combination of experiments at low- and highly enriched uranium reactors.

3.
Phys Rev Lett ; 128(8): 081802, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35275665

RESUMO

The PROSPECT and STEREO collaborations present a combined measurement of the pure ^{235}U antineutrino spectrum, without site specific corrections or detector-dependent effects. The spectral measurements of the two highest precision experiments at research reactors are found to be compatible with χ^{2}/ndf=24.1/21, allowing a joint unfolding of the prompt energy measurements into antineutrino energy. This ν[over ¯]_{e} energy spectrum is provided to the community, and an excess of events relative to the Huber model is found in the 5-6 MeV region. When a Gaussian bump is fitted to the excess, the data-model χ^{2} value is improved, corresponding to a 2.4σ significance.

4.
Phys Rev Lett ; 122(25): 251801, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31347897

RESUMO

This Letter reports the first measurement of the ^{235}U ν[over ¯]_{e} energy spectrum by PROSPECT, the Precision Reactor Oscillation and Spectrum experiment, operating 7.9 m from the 85 MW_{th} highly enriched uranium (HEU) High Flux Isotope Reactor. With a surface-based, segmented detector, PROSPECT has observed 31678±304(stat) ν[over ¯]_{e}-induced inverse beta decays, the largest sample from HEU fission to date, 99% of which are attributed to ^{235}U. Despite broad agreement, comparison of the Huber ^{235}U model to the measured spectrum produces a χ^{2}/ndf=51.4/31, driven primarily by deviations in two localized energy regions. The measured ^{235}U spectrum shape is consistent with a deviation relative to prediction equal in size to that observed at low-enriched uranium power reactors in the ν[over ¯]_{e} energy region of 5-7 MeV.

5.
Phys Rev Lett ; 121(25): 251802, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30608854

RESUMO

This Letter reports the first scientific results from the observation of antineutrinos emitted by fission products of ^{235}U at the High Flux Isotope Reactor. PROSPECT, the Precision Reactor Oscillation and Spectrum Experiment, consists of a segmented 4 ton ^{6}Li-doped liquid scintillator detector covering a baseline range of 7-9 m from the reactor and operating under less than 1 m water equivalent overburden. Data collected during 33 live days of reactor operation at a nominal power of 85 MW yield a detection of 25 461±283 (stat) inverse beta decays. Observation of reactor antineutrinos can be achieved in PROSPECT at 5σ statistical significance within 2 h of on-surface reactor-on data taking. A reactor model independent analysis of the inverse beta decay prompt energy spectrum as a function of baseline constrains significant portions of the previously allowed sterile neutrino oscillation parameter space at 95% confidence level and disfavors the best fit of the reactor antineutrino anomaly at 2.2σ confidence level.

6.
Metrologia ; 54(1A)2017.
Artigo em Inglês | MEDLINE | ID: mdl-33100400

RESUMO

In 2016, comparisons of activity measurements of 18F and 64Cu using the Transfer Instrument of the International Reference System (SIRTI) took place at the National Institute of Standards and Technology (NIST, USA). This is the first SIRTI comparison for 64Cu. Ampoules containing about 27 kBq of 18F and 100 kBq of 64Cu solutions were measured in the SIRTI for about 5 and 1.5 half-lives, respectively. The NIST standardized the activity in the ampoules by ionization chamber measurements traceable to 4π(LS)ß-γ anticoincidence measurements. The comparisons, identifiers BIPM.RI(II)-K4.F-18 and BIPM.RI(II)-K4.Cu-64, are linked to the corresponding BIPM.RI(II)-K1.F-18 and BIPM.RI(II)-K1.Cu-64 comparisons and degrees of equivalence with the respective key comparison reference values have been evaluated. The NIST replaces its earlier degree of equivalence for 18F obtained in the frame of the CCRI(II)-K3.F-18 comparison in 2001.

7.
Phys Lett B ; 761: 281-286, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-28057978

RESUMO

The hypothesis that proximity to the Sun causes variation of decay constants at permille level has been tested and disproved. Repeated activity measurements of mono-radionuclide sources were performed over periods from 200 days up to four decades at 14 laboratories across the globe. Residuals from the exponential nuclear decay curves were inspected for annual oscillations. Systematic deviations from a purely exponential decay curve differ from one data set to another and are attributable to instabilities in the instrumentation and measurement conditions. The most stable activity measurements of alpha, beta-minus, electron capture, and beta-plus decaying sources set an upper limit of 0.0006% to 0.008% to the amplitude of annual oscillations in the decay rate. Oscillations in phase with Earth's orbital distance to the Sun could not be observed within a 10-6 to 10-5 range of precision. There are also no apparent modulations over periods of weeks or months. Consequently, there is no indication of a natural impediment against sub-permille accuracy in half-life determinations, renormalisation of activity to a distant reference date, application of nuclear dating for archaeology, geo- and cosmochronology, nor in establishing the SI unit becquerel and seeking international equivalence of activity standards.

8.
Artigo em Inglês | MEDLINE | ID: mdl-26958437

RESUMO

After discovering a discrepancy in the transfer standard currently being disseminated by the National Institute of Standards and Technology (NIST), we have performed a new primary standardization of the alpha-emitter (223)Ra using Live-timed Anticoincidence Counting (LTAC) and the Triple-to-Double Coincidence Ratio Method (TDCR). Additional confirmatory measurements were made with the CIEMAT-NIST efficiency tracing method (CNET) of liquid scintillation counting, integral γ-ray counting using a NaI(Tl) well counter, and several High Purity Germanium (HPGe) detectors in an attempt to understand the origin of the discrepancy and to provide a correction. The results indicate that a -9.5 % difference exists between activity values obtained using the former transfer standard relative to the new primary standardization. During one of the experiments, a 2 % difference in activity was observed between dilutions of the (223)Ra master solution prepared using the composition used in the original standardization and those prepared using 1 mol·L(-1) HCl. This effect appeared to be dependent on the number of dilutions or the total dilution factor to the master solution, but the magnitude was not reproducible. A new calibration factor ("K-value") has been determined for the NIST Secondary Standard Ionization Chamber (IC "A"), thereby correcting the discrepancy between the primary and secondary standards.

9.
Appl Radiat Isot ; 205: 111171, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38181577

RESUMO

Absolute gamma-ray emission intensities for 36 characteristic gamma rays from the decay of 224Ra, 212Pb, and their progeny were determined by measuring sources calibrated for activity by means of primary methods based on well-defined high-purity germanium (HPGe) detectors at both NIST and NPL. Results from the two laboratories agree with recent data evaluations, except for gamma rays with low emission intensities. The decay schemes have been re-balanced based on the new results. In addition, the half-life for 212Pb was measured using several HPGe detectors, ionization chambers, and a well-type NaI(Tl) detector.

10.
J Res Natl Inst Stand Technol ; 118: 359-74, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-26401437

RESUMO

The International Atomic Energy Agency (IAEA) has organized an international comparison to assess Single Photon Emission Computed Tomography (SPECT) image quantification capabilities in 12 countries. Iodine-131 was chosen as the radionuclide for the comparison because of its wide use around the world, but for logistical reasons solid (133)Ba sources were used as a long-lived surrogate for (131)I. For this study, we designed a set of solid cylindrical sources so that each site could have a set of phantoms (having nominal volumes of 2 mL, 4 mL, 6 mL, and 23 mL) with traceable activity calibrations so that the results could be properly compared. We also developed a technique using two different detection methods for individually calibrating the sources for (133)Ba activity based on a National standard. This methodology allows for the activity calibration of each (133)Ba source with a standard uncertainty on the activity of 1.4 % for the high-level 2-, 4-, and 6-mL sources and 1.7 % for the lower-level 23 mL cylinders. This level of uncertainty allows for these sources to be used for the intended comparison exercise, as well as in other SPECT image quantification studies.

11.
Appl Radiat Isot ; 167: 109455, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33039762

RESUMO

The National Institute of Standards and Technology (NIST) performed new standardization measurements for 124I. As part of this work the absolute photon emission intensity for the main gamma-rays of 124I were determined using several high-purity germanium (HPGe) detectors. In addition, the half-life for 124I was also determined using an HPGe detector. Ionization chamber measurements were performed for additional sources, but it was not possible to obtain a precise half-life value.

12.
J Exp Med ; 187(7): 1103-11, 1998 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-9529326

RESUMO

It is currently well established that HIV-1 Vpr augments viral replication in primary human macrophages. In its virion-associated form, Vpr has been suggested to aid efficient translocation of the proviral DNA into the cell nucleus. Although Vpr growth-arrests dividing T cells, the relevance of this biological activity in nondividing macrophages is unclear. Here we use Vpr-mutants to demonstrate that the molecular determinants involved in G2-arresting T cells are also involved in increasing viral transcription in macrophages, even though these cells are refractive to the diploid DNA status typical of G2 phase. Our results suggest that the two phenotypes, namely the nuclear localization and the G2-arrest activity of the protein, segregate functionally among the late and early functions of Vpr. The nuclear localization property of Vpr correlates with its ability to effectively target the proviral DNA to the cell nucleus early in the infection, whereas the G2-arrest phenotype correlates with its ability to activate viral transcription after establishment of an infection. These two functions may render Vpr's role essential and not accessory under infection conditions that closely mimic the in vivo situation, that is, primary cells being infected at low viral inputs.


Assuntos
Produtos do Gene vpr/genética , HIV-1/química , Macrófagos/virologia , Transcrição Gênica/genética , Núcleo Celular/metabolismo , Replicação do DNA/genética , DNA Viral/genética , DNA Viral/metabolismo , Fase G2/fisiologia , Regulação Viral da Expressão Gênica/genética , Produtos do Gene vpr/fisiologia , Humanos , Fenótipo , RNA Viral/genética , RNA Viral/metabolismo , Linfócitos T/fisiologia , Proteínas Virais/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana
13.
Artigo em Inglês | MEDLINE | ID: mdl-33093736

RESUMO

Neutral particle detection in high-background environments is greatly aided by the ability to easily load 6Li into liquid scintillators. We describe a readily available and inexpensive liquid scintillation cocktail stably loaded with a Li mass fraction up to 1 %. Compositions that give thermodynamically stable microemulsions (reverse-micellar systems) were explored, using a Compton spectrum quenching technique to distinguish these from unstable emulsions. Scintillation light yield and transmittance were characterized. Pulse shape discrimination (PSD) was measured using a 252Cf source, showing that electron-like and proton-like recoil events are well-resolved even for Li loading up to 1 %, providing a means of background suppression in neutron/neutrino detectors. While samples in this work were prepared with nat Li (7.59 % 6Li), the neutron capture peak was clearly visible in the PSD spectrum; this implies that while extremely high capture efficiency could be achieved with 6Li-enriched material, a very inexpensive neutron-sensitive detector can be prepared with nat Li.

14.
Appl Radiat Isot ; 156: 108943, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31683089

RESUMO

The National Institute of Standards and Technology (NIST) measured the internal pair production branching ratio of 90Y using two sources and four high purity germanium (HPGe) detectors to detect the resulting annihilation radiation. The internal pair production branching ratio determined from these measurements, (32.0 ±â€¯1.5) × 10-6 (k = 1), agrees within 1 standard uncertainty with the recommended value of (32.6 ±â€¯0.7) × 10-6 (k = 1) from the DDEP database.

15.
Appl Radiat Isot ; 163: 109216, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32561054

RESUMO

Re-entrant ionization chambers (ICs) are essential to radionuclide metrology and nuclear medicine for maintaining standards and measuring half-lives. The requirements of top-level metrology demand that systems must be precise and stable to 0.1 % over many years, and linear from 10-14 A to 10-8 A. Thus, laboratories depend on bespoke current measurement systems and often rely on sealed sources to generate reference currents. To maintain and improve present capabilities, metrologists need to overcome two looming challenges: ageing electronics and decreasing availability of sealed sources. Possible solutions using Ultrastable Low-Noise Current Amplifiers (ULCAs), resistive-feedback electrometers, and (quantum) single-electron pumps are reviewed. Broader discussions of IC design and methodology are discussed. ULCAs show promise and resistive-feedback systems which take advantage of standard resistor calibrations offer an alternative.

16.
Phys Rev C ; 1012020.
Artigo em Inglês | MEDLINE | ID: mdl-33336123

RESUMO

Reactor neutrino experiments have seen major improvements in precision in recent years. With the experimental uncertainties becoming lower than those from theory, carefully considering all sources of ν ¯ e is important when making theoretical predictions. One source of ν ¯ e that is often neglected arises from the irradiation of the nonfuel materials in reactors. The ν ¯ e rates and energies from these sources vary widely based on the reactor type, configuration, and sampling stage during the reactor cycle and have to be carefully considered for each experiment independently. In this article, we present a formalism for selecting the possible ν ¯ e sources arising from the neutron captures on reactor and target materials. We apply this formalism to the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory, the ν ¯ e source for the the Precision Reactor Oscillation and Spectrum Measurement (PROSPECT) experiment. Overall, we observe that the nonfuel ν ¯ e contributions from HFIR to PROSPECT amount to 1% above the inverse beta decay threshold with a maximum contribution of 9% in the 1.8-2.0 MeV range. Nonfuel contributions can be particularly high for research reactors like HFIR because of the choice of structural and reflector material in addition to the intentional irradiation of target material for isotope production. We show that typical commercial pressurized water reactors fueled with low-enriched uranium will have significantly smaller nonfuel ν ¯ e contribution.

17.
Appl Radiat Isot ; 154: 108849, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31465950

RESUMO

A solution of 124I was standardized for activity by 4πß(LS)-γ(NaI) live-timed anticoincidence (LTAC) counting, with confirmatory measurements by triple-to-double coincidence ratio (TDCR) and CIEMAT-NIST efficiency tracing (CNET) liquid scintillation counting. The LTAC-based standard was shown to be in agreement (within k = 1 uncertainties) with previous measurements at NIST and elsewhere. Calibration settings for radionuclide calibrators were determined and a discrepancy with literature values, partially due to a calibration methodology dependent upon an erroneous setting for 18F, was identified and explained.

18.
Appl Radiat Isot ; 134: 68-73, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28974328

RESUMO

Using uniform cylindrical phantoms containing calibrated solutions of 18F and 64Cu, we evaluated for the first time the accuracy with which the activity concentration of 64Cu can be quantified on an absolute basis using Positron Emission Tomography (with X-ray Computed Tomography, PET-CT). The scanner was first calibrated for 18F using the manufacturer's calibration protocol and a phantom with an activity concentration value traceable to the U.S. National standard. By using a similarly calibrated 18F solution phantom, we were able to determine a correction factor that can be applied to the 64Cu imaging data that gave a result that is consistent with 100% recovery with a combined standard uncertainty of 2%. We also demonstrate how a calibrated, solid phantom containing 68Ge as a long-lived 18F surrogate can be used to monitor and transfer the correction factor to other studies.

19.
Appl Radiat Isot ; 139: 266-273, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29879531

RESUMO

The complex decay scheme that makes 64Cu promising as both an imaging and therapeutic agent in medicine also makes the absolute measurement of its activity challenging. The National Institute of Standards and Technology (NIST) has completed a primary activity standardization of a 64CuCl2 solution using the 4πß(LS)-γ(NaI) live-timed anticoincidence (LTAC) counting method with a combined standard uncertainty of 0.51 %. Two liquid scintillation (LS) counting methods were employed for confirmatory measurements. Secondary measurements were made by high-purity germanium detectors, pressurized ionization chambers (IC), and a well-type NaI(Tl) counter. Agreement between the LTAC-based standard and standards from other laboratories was established via IC calibration factors. Poor agreement between methods and with theoretical IC responses may indicate a need for improved ß+/- branching probabilities and a better treatment of ß+/- spectra.

20.
Appl Radiat Isot ; 134: 385-390, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29248210

RESUMO

An international key comparison, identifier CCRI(II)-K2.Ge-68, has been performed. The National Institute of Standards and Technology (NIST) served as the pilot laboratory, distributing aliquots of a 68Ge/68Ga solution. Results for the activity concentration, CA, of 68Ge at a reference date of 12h00 UTC 14 November 2014 were submitted by 17 laboratories, encompassing many variants of coincidence methods and liquid-scintillation counting methods. The first use of 4π(Cherenkov)ß-γ coincidence and anticoincidence methods in an international comparison is reported. One participant reported results by secondary methods only. Two results, both utilizing pure liquid-scintillation methods, were identified as outliers. Evaluation using the Power-Moderated Mean method results in a proposed Comparison Reference Value (CRV) of 621.7(11)kBqg-1, based on 14 results. The degrees of equivalence and their associated uncertainties are evaluated for each participant. Several participants submitted 3.6mL ampoules to the BIPM to link the comparison to the International Reference System (SIR) which may lead to the evaluation of a Key Comparison Reference Value and associated degrees of equivalence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA