Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 57(1): 343-347, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29084363

RESUMO

Oxygen-containing heterocycles are a common structural motif in polyketide natural products and contribute significantly to their biological activity. Here, we report structural and mechanistic investigations on AmbDH3, a polyketide synthase domain with dual activity as dehydratase (DH) and pyran-forming cyclase in ambruticin biosynthesis. AmbDH3 is similar to monofunctional DH domains, using H51 and D215 for dehydration. V173 was confirmed as a diagnostic residue for cyclization activity by a mutational study and enzymatic in vitro experiments. Similar motifs were observed in the seemingly monofunctional AmbDH2, which also shows an unexpected cyclase activity. Our results pave the way for mining of hidden cyclases in biosynthetic pathways. They also open interesting prospects for the generation of novel biocatalysts for chemoenzymatic synthesis and pyran-polyketides by combinatorial biosynthesis.

2.
Molecules ; 21(11)2016 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-27801873

RESUMO

We describe the characterisation of the O-methyltransferase JerF from the late stages of jerangolid biosynthesis. JerF is the first known example of an enzyme that catalyses the formation of a non-aromatic, cyclic methylenolether. The enzyme was overexpressed in E. coli and the cell-free extracts were used in bioconversion experiments. Chemical synthesis gave access to a series of substrate surrogates that covered a broad structural space. Enzymatic assays revealed a broad substrate tolerance and high regioselectivity of JerF, which makes it an attractive candidate for an application in chemoenzymatic synthesis with particular usefulness for late stage application on 4-methoxy-5,6-dihydro-2H-pyran-2-one-containing natural products.


Assuntos
Metiltransferases/metabolismo , Piranos/metabolismo , Biocatálise , Escherichia coli/genética , Metiltransferases/genética , Estereoisomerismo , Especificidade por Substrato
3.
Angew Chem Int Ed Engl ; 55(43): 13589-13592, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27670141

RESUMO

The olefin shift is an important modification during polyketide biosynthesis. Particularly for type I cis-AT PKS, little information has been gained on the enzymatic mechanisms involved. We present our in vitro investigations on the olefin shift occurring during ambruticin biosynthesis. The unique, multifunctional domain AmbDH4 catalyzes consecutive dehydration, epimerization, and enoyl isomerization. The resulting 3-enethioate is removed from the equilibrium by α-methylation catalyzed by the highly specific C-methyltransferase AmbM. This thermodynamically unfavorable overall process is enabled by the high, concerted substrate specificity of the involved enzymes. AmbDH4 shows close relationship to DH domains and initial mechanistic studies suggest that the olefin shift occurs via a similar proton-shuttling mechanism as previously described for EI domains from trans-AT-PKS.


Assuntos
Alcenos/metabolismo , Hidroliases/metabolismo , Metiltransferases/metabolismo , Alcenos/química , Biocatálise , Hidroliases/química , Metiltransferases/química , Conformação Molecular , Piranos/química , Piranos/metabolismo
4.
Angew Chem Int Ed Engl ; 53(51): 14240-4, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25327645

RESUMO

Hydropyran rings are a common structural motif in reduced polyketides. Information on their biosynthetic formation and particularly the biochemical characterization of the responsible enzymes has only been reported in few cases. The dehydratase domain AmbDH3 from the ambruticin polyketide synthase was investigated. Through in vitro assay of the recombinant domain with synthetically-derived substrate surrogates, it was shown that it has a second catalytic activity as a cyclase that performs oxa-conjugate addition. Probing AmbDH3 with synthetic substrate analogues revealed stereoselectivity and substrate tolerance in both substeps. This is the first characterization of a pyran-forming cyclase from a cis-AT PKS system and the first report of a polyketide synthase domain with this kind of dual activity. Finally, it was revealed that this domain shows potential for application in chemoenzymatic synthesis.


Assuntos
Hidroliases/metabolismo , Ativação Enzimática , Hidroliases/química , Hidroliases/genética , Conformação Molecular , Piranos/química , Piranos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA