Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Transl Med ; 20(1): 124, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35287669

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T-cell therapy has proven to be a valuable new treatment option for patients with B-cell malignancies. However, by applying selective pressure, outgrowth of antigen-negative tumor cells can occur, eventually resulting in relapse. Subsequent rescue by administration of CAR-T cells with different antigen-specificity indicates that those tumor cells are still sensitive to CAR-T treatment and points towards a multi-target strategy. Due to their natural tumor sensitivity and highly cytotoxic nature, natural killer (NK) cells are a compelling alternative to T cells, especially considering the availability of an off-the-shelf unlimited supply in the form of the clinically validated NK-92 cell line. METHODS: Given our goal to develop a flexible system whereby the CAR expression repertoire of the effector cells can be rapidly adapted to the changing antigen expression profile of the target cells, electrotransfection with CD19-/BCMA-CAR mRNA was chosen as CAR loading method in this study. We evaluated the functionality of mRNA-engineered dual-CAR NK-92 against tumor B-cell lines and primary patient samples. In order to test the clinical applicability of the proposed cell therapy product, the effect of irradiation on the proliferative rate and functionality of dual-CAR NK-92 cells was investigated. RESULTS: Co-electroporation of CD19 and BMCA CAR mRNA was highly efficient, resulting in 88.1% dual-CAR NK-92 cells. In terms of CD107a degranulation, and secretion of interferon (IFN)-γ and granzyme B, dual-CAR NK-92 significantly outperformed single-CAR NK-92. More importantly, the killing capacity of dual-CAR NK-92 exceeded 60% of single and dual antigen-expressing cell lines, as well as primary tumor cells, in a 4h co-culture assay at low effector to target ratios, matching that of single-CAR counterparts. Furthermore, our results confirm that dual-CAR NK-92 irradiated with 10 Gy cease to proliferate and are gradually cleared while maintaining their killing capacity. CONCLUSIONS: Here, using the clinically validated NK-92 cell line as a therapeutic cell source, we established a readily accessible and flexible platform for the generation of highly functional dual-targeted CAR-NK cells.


Assuntos
Antígeno de Maturação de Linfócitos B , Receptores de Antígenos Quiméricos , Antígeno de Maturação de Linfócitos B/metabolismo , Citotoxicidade Imunológica , Humanos , Imunoterapia Adotiva/métodos , Células Matadoras Naturais , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo
2.
Cytotherapy ; 24(6): 659-672, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35193826

RESUMO

Regulatory T cells (Tregs) are crucial in inducing and maintaining tolerance. This unique capacity of Tregs, in combination with proof-of-principle in preclinical studies, highlights the potential clinical use of Tregs for the treatment of autoimmunity and transplant rejection. Although proven to be safe and well tolerated in the first clinical trials, only modest clinical results were observed. In this regard, it has been hypothesized that current challenges lie in the development of antigen-specific Tregs. Here, we present an innovative, good manufacturing practices (GMP)-compliant manufacturing protocol for Tregs applicable in a clinical-grade setting, allowing efficient and safe redirection of Treg specificity. First, a soluble polymer conjugated with antibodies to CD3 and CD28 and high amounts of exogenous IL-2 for in vitro Treg expansion resulted in a >70-fold and 185-fold increase of a pure population of CD4+CD127-CD25hi Tregs and CD4+CD127-CD25+CD45RA+ Tregs, respectively. Next, as a proof-of-principle, expanded Tregs were engineered by means of TCR-encoding mRNA electroporation to generate antigen-specific Tregs. This resulted in an expression of the newly introduced TCR in up to 85% of Tregs. Moreover, we did not observe a negative effect on the phenotype of Tregs, as demonstrated by the expression of FOXP3, Helios, CTLA-4 and CCR4, nor on the TSDR methylation status. Importantly, mRNA-engineered Tregs were still able to induce in vitro suppression of effector T cells and produced anti-inflammatory, but not pro-inflammatory, cytokines when activated. In conclusion, our findings demonstrate that high numbers of stable and functional Tregs can be obtained with high purity and successfully engineered for gain of function, in a GMP-compliant manner. We envisage that this clinical-grade protocol will provide solid basis for future clinical application of mRNA-engineered Tregs.


Assuntos
Fatores de Transcrição Forkhead , Linfócitos T Reguladores , Eletroporação , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo
3.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499533

RESUMO

Although the global pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still ongoing, there are currently no specific and highly efficient drugs for COVID-19 available, particularly in severe cases. Recent findings demonstrate that severe COVID-19 disease that requires hospitalization is associated with the hyperactivation of CD4+ and CD8+ T cell subsets. In this study, we aimed to counteract this high inflammatory state by inducing T-cell hyporesponsiveness in a SARS-CoV-2-specific manner using tolerogenic dendritic cells (tolDC). In vitro-activated SARS-CoV-2-specific T cells were isolated and stimulated with SARS-CoV-2 peptide-loaded monocyte-derived tolDC or with SARS-CoV-2 peptide-loaded conventional (conv) DC. We demonstrate a significant decrease in the number of interferon (IFN)-γ spot-forming cells when SARS-CoV-2-specific T cells were stimulated with tolDC as compared to stimulation with convDC. Importantly, this IFN-γ downmodulation in SARS-CoV-2-specific T cells was antigen-specific, since T cells retain their capacity to respond to an unrelated antigen and are not mediated by T cell deletion. Altogether, we have demonstrated that SARS-CoV-2 peptide-pulsed tolDC induces SARS-CoV-2-specific T cell hyporesponsiveness in an antigen-specific manner as compared to stimulation with SARS-CoV-2-specific convDC. These observations underline the clinical potential of tolDC to correct the immunological imbalance in the critically ill.


Assuntos
COVID-19 , Linfócitos T , Humanos , SARS-CoV-2 , Tolerância Imunológica , Células Dendríticas , Antígenos , Peptídeos , Apoptose
4.
Glia ; 69(2): 326-345, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32865285

RESUMO

Cellular models of induced pluripotent stem cell (iPSC)-derived microglia and macrophages are an emerging toolbox to investigate neuroinflammation in vitro. We previously demonstrated that murine iPSC-microglia and iPSC-macrophages display phenotypical activation properties highly comparable to microglia and macrophages in vivo. Here we extended the characterization of iPSC-microglia and iPSC-macrophages with the analysis of their transcriptome profile. Next, these cellular models were employed to evaluate neuroimmune toxicity in vitro and to investigate the immune-modulatory properties of interleukin 13 (IL13), a cytokine known for its ability to protect against neuroinflammation-induced pathology by modulating microglia and macrophage activation. iPSC-microglia and iPSC-macrophages, in co-culture with astrocyte-committed neural stem cells (NSC), were (pre)treated with IL13 and stimulated with lipopolysaccharide (LPS) and interferon γ (IFNγ), to assess how IL13 modulates their inflammatory response. Additionally, the use of luciferase-expressing NSC (Luc-NSC) allowed real-time monitoring of immune-mediated neurotoxicity. Despite the known anti-inflammatory properties of IL13, iPSC-microglia primed with IL13 before LPS + IFNγ stimulation significantly increased NO secretion. This was associated with a marked reduction of the luminescence signal produced by Luc-NSC. Interestingly, we observed that IL13 signaling has a divergent functional outcome in microglia as compared to macrophages, as for the latter no major alterations in NO release and Luc-NSC viability were observed upon IL13 (pre)treatment. Finally, the striking IL13-induced upregulation of NO secretion by microglia under pro-inflammatory conditions was confirmed in vivo, where intracerebral delivery of IL13 increased inducible nitric oxide synthase mRNA expression. Concluding, we applied iPSC-derived neuroimmune cell culture models to identify distinct neuroimmune (toxicity) responses of microglia and macrophages to IL13-based immune modulation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Microglia , Animais , Técnicas de Cultura de Células , Interleucina-13 , Lipopolissacarídeos/toxicidade , Macrófagos , Camundongos , Doenças Neuroinflamatórias
5.
Brain Behav Immun ; 88: 856-866, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32224056

RESUMO

In recent years the long-standing theory of microglia's properties for dual polarization towards a pro- or anti-inflammatory phenotype has been deeply challenged. Furthermore, the elucidation of microglia ontogenesis exposed intrinsic differences between microglia and peripheral myeloid cells, thereby further underscoring the need to re-evaluate microglia-specific activation behavior, especially within an inflamed central nervous system (CNS) environment. This review critically summarizes recent literature on the in vitro and in vivo response of murine microglia to the immune-modulatory cytokines interleukin 4 (IL4) and interleukin 13 (IL13), i.e. those driving the so-called anti-inflammatory phenotype. Here we highlight several pivotal factors that may influence experimental outcome and/or interpretation of in vitro and in vivo studies evaluating microglia's phenotypical and functional properties upon IL4/IL13 treatment. Finally, the current therapeutic relevance of IL4/IL13-induced microglia activation in both acute and chronic CNS disorders is discussed.


Assuntos
Microglia , Animais , Doenças do Sistema Nervoso Central , Citocinas , Interleucina-13 , Interleucina-4
6.
Breast J ; 26(5): 995-999, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31797488

RESUMO

Recently, the complex role of immune therapy has been the target of increased attention in breast cancer, particularly in triple-negative breast cancer (TNBC). Although TNBC is sensitive to chemotherapy, the recurrence and mortality rates are worse compared with the other breast cancer types. In addition, TNBC still lacks targeted treatment options. With the improved understanding of the immune system in TNBC, it is expected that new predictive and prognostic markers will be identified, and innovative treatment modalities will be developed. The aim of this review was to provide an overview of the effector cells in the TNBC's microenvironment and to highlight a novel approach to treat this kind of cancer. A computer-based literature research was carried out using PubMed, American Society of Clinical Oncology Annual Meeting (ASCO) and San Antonio Breast Cancer Symposium (SABCS). To date, studies have shown that tumor-infiltrating lymphocytes (TILs) and tumor-associated macrophages (TAMs) play a very important role in the TNBC's microenvironment. Tumor-infiltrating lymphocytes can even be considered as biomarkers to predict chemotherapy response in TNBC. Furthermore, TNBC was shown to have immune active subtypes, and therefore, the use of immunotherapy may be an attractive treatment approach. In this respect, several randomized studies have been designed or are currently ongoing to explore the combination of chemotherapy with immunotherapy in TNBC. Combination of chemo- and immunotherapy is likely to be beneficial in a subgroup of patients with TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Mama , Linfócitos do Interstício Tumoral , Recidiva Local de Neoplasia , Prognóstico , Neoplasias de Mama Triplo Negativas/terapia , Microambiente Tumoral
7.
J Neuroinflammation ; 16(1): 167, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31416452

RESUMO

BACKGROUND: Although effective in reducing relapse rate and delaying progression, current therapies for multiple sclerosis (MS) do not completely halt disease progression. T cell autoimmunity to myelin antigens is considered one of the main mechanisms driving MS. It is characterized by autoreactivity to disease-initiating myelin antigen epitope(s), followed by a cascade of epitope spreading, which are both strongly patient-dependent. Targeting a variety of MS-associated antigens by myelin antigen-presenting tolerogenic dendritic cells (tolDC) is a promising treatment strategy to re-establish tolerance in MS. Electroporation with mRNA encoding myelin proteins is an innovative technique to load tolDC with the full spectrum of naturally processed myelin-derived epitopes. METHODS: In this study, we generated murine tolDC presenting myelin oligodendrocyte glycoprotein (MOG) using mRNA electroporation and we assessed the efficacy of MOG mRNA-electroporated tolDC to dampen pathogenic T cell responses in experimental autoimmune encephalomyelitis (EAE). For this, MOG35-55-immunized C57BL/6 mice were injected intravenously at days 13, 17, and 21 post-disease induction with 1α,25-dihydroxyvitamin D3-treated tolDC electroporated with MOG-encoding mRNA. Mice were scored daily for signs of paralysis. At day 25, myelin reactivity was evaluated following restimulation of splenocytes with myelin-derived epitopes. Ex vivo magnetic resonance imaging (MRI) was performed to assess spinal cord inflammatory lesion load. RESULTS: Treatment of MOG35-55-immunized C57BL/6 mice with MOG mRNA-electroporated or MOG35-55-pulsed tolDC led to a stabilization of the EAE clinical score from the first administration onwards, whereas it worsened in mice treated with non-antigen-loaded tolDC or with vehicle only. In addition, MOG35-55-specific pro-inflammatory pathogenic T cell responses and myelin antigen epitope spreading were inhibited in the peripheral immune system of tolDC-treated mice. Finally, magnetic resonance imaging analysis of hyperintense spots along the spinal cord was in line with the clinical score. CONCLUSIONS: Electroporation with mRNA is an efficient and versatile tool to generate myelin-presenting tolDC that are capable to stabilize the clinical score in EAE. These results pave the way for further research into mRNA-electroporated tolDC treatment as a patient-tailored therapy for MS.


Assuntos
Células Dendríticas/metabolismo , Eletroporação/métodos , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/terapia , Glicoproteína Mielina-Oligodendrócito/metabolismo , RNA Mensageiro/metabolismo , Animais , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/imunologia , Feminino , Humanos , Tolerância Imunológica/fisiologia , Células K562 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito/administração & dosagem , Glicoproteína Mielina-Oligodendrócito/imunologia , RNA Mensageiro/administração & dosagem , RNA Mensageiro/imunologia
8.
Blood ; 130(15): 1713-1721, 2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-28830889

RESUMO

Relapse is a major problem in acute myeloid leukemia (AML) and adversely affects survival. In this phase 2 study, we investigated the effect of vaccination with dendritic cells (DCs) electroporated with Wilms' tumor 1 (WT1) messenger RNA (mRNA) as postremission treatment in 30 patients with AML at very high risk of relapse. There was a demonstrable antileukemic response in 13 patients. Nine patients achieved molecular remission as demonstrated by normalization of WT1 transcript levels, 5 of which were sustained after a median follow-up of 109.4 months. Disease stabilization was achieved in 4 other patients. Five-year overall survival (OS) was higher in responders than in nonresponders (53.8% vs 25.0%; P = .01). In patients receiving DCs in first complete remission (CR1), there was a vaccine-induced relapse reduction rate of 25%, and 5-year relapse-free survival was higher in responders than in nonresponders (50% vs 7.7%; P < .0001). In patients age ≤65 and >65 years who received DCs in CR1, 5-year OS was 69.2% and 30.8% respectively, as compared with 51.7% and 18% in the Swedish Acute Leukemia Registry. Long-term clinical response was correlated with increased circulating frequencies of polyepitope WT1-specific CD8+ T cells. Long-term OS was correlated with interferon-γ+ and tumor necrosis factor-α+ WT1-specific responses in delayed-type hypersensitivity-infiltrating CD8+ T lymphocytes. In conclusion, vaccination of patients with AML with WT1 mRNA-electroporated DCs can be an effective strategy to prevent or delay relapse after standard chemotherapy, translating into improved OS rates, which are correlated with the induction of WT1-specific CD8+ T-cell response. This trial was registered at www.clinicaltrials.gov as #NCT00965224.


Assuntos
Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Leucemia Mieloide Aguda/prevenção & controle , Leucemia Mieloide Aguda/terapia , Vacinação , Idoso , Biomarcadores Tumorais/metabolismo , Citocinas/metabolismo , Intervalo Livre de Doença , Eletroporação , Feminino , Humanos , Estimativa de Kaplan-Meier , Leucemia Mieloide Aguda/imunologia , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Recidiva , Indução de Remissão , Resultado do Tratamento , Proteínas WT1/genética , Proteínas WT1/metabolismo
9.
Brain Behav Immun ; 82: 406-421, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31525508

RESUMO

The establishment and validation of reliable induced pluripotent stem cell (iPSC)-derived in vitro models to study microglia and monocyte/macrophage immune function holds great potential for fundamental and translational neuro-immunology research. In this study, we first demonstrate that ramified CX3CR1+ iPSC-microglia (cultured within a neural environment) and round-shaped CX3CR1- iPSC-macrophages can easily be differentiated from newly established murine CX3CR1eGFP/+CCR2RFP/+ iPSC lines. Furthermore, we show that obtained murine iPSC-microglia and iPSC-macrophages are distinct cell populations, even though iPSC-macrophages may upregulate CX3CR1 expression when cultured within a neural environment. Next, we characterized the phenotypical and functional properties of murine iPSC-microglia and iPSC-macrophages following classical and alternative immune polarisation. While iPSC-macrophages could easily be triggered to adopt a classically-activated or alternatively-activated phenotype following, respectively, lipopolysaccharide + interferon γ or interleukin 13 (IL13) stimulation, iPSC-microglia and iPSC-macrophages cultured within a neural environment displayed a more moderate activation profile as characterised by the absence of MHCII expression upon classical immune polarisation and the absence of Ym1 expression upon alternative immune polarisation. Finally, extending our preceding in vivo studies, this striking phenotypical divergence was also observed for resident microglia and infiltrating monocytes within highly inflammatory cortical lesions in CX3CR1eGFP/+CCR2RFP/+ mice subjected to middle cerebral arterial occlusion (MCAO) stroke and following IL13-mediated therapeutic intervention thereon. In conclusion, our study demonstrates that the applied murine iPSC-microglia and iPSC-macrophage culture models are able to recapitulate in vivo microglia and monocyte/macrophage ontogeny and corresponding phenotypical/functional properties upon classical and alternative immune polarisation, and therefore represent a valuable in vitro platform to further study and modulate microglia and (infiltrating) monocyte immune responses under neuro-inflammatory conditions within a neural environment.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo , Neuroimunomodulação/fisiologia , Animais , Receptor 1 de Quimiocina CX3C/metabolismo , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Feminino , Células-Tronco Pluripotentes Induzidas/fisiologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Monócitos/metabolismo , Neuroimunomodulação/imunologia , Fenótipo , Receptores CCR2/metabolismo
10.
Acta Haematol ; 142(4): 197-207, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31163431

RESUMO

OBJECTIVES: To assess interruptions/discontinuations of tyrosine kinase inhibitor (TKI) treatment in Belgian patients with chronic myeloid leukaemia (CML). METHODS: This retrospective study included patients with TKI interruptions/discontinuations of ≥4 continuous weeks (no clinical trial context) between May 2013 and May 2016. Data collection took place between October 2016 and February 2017. RESULTS: All 60 participants (69 interruptions/discontinuations) had chronic-phase CML and 75% had at least a major molecular response (≥MMR) at interruption/discontinuation. Most interruptions/discontinuations occurred while on imatinib (36/69; 49%) and dasatinib (20/69; 29%). Most interruptions/discontinuations occurred due to side effects/intolerance (46/69; 67%); other reasons included a wish to conceive (6/69; 9%) and attempts to achieve treatment-free remission (TFR) (6/69; 9%). Interruptions due to side effects occurred later for imatinib- or dasatinib-treated patients than for those on nilotinib or ponatinib. Treatment was re-initiated in 62% (43/69) of cases. Most interruptions caused by side effects/intolerance were followed by treatment changes. All 4 patients with ≥MR 4.5 at interruption/discontinuation and ≥11-month follow-up who had not restarted treatment maintained the response. CONCLUSION: Although TKIs are used for long-term CML treatment, physicians sometimes recommend interruptions/discontinuations. In this study, interruptions/discontinuations were mainly caused by side effects or intolerance, rather than TFR attempts.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/efeitos adversos , Idoso , Bélgica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
11.
Pharmacol Rev ; 67(4): 731-53, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26240218

RESUMO

Although the earliest­rudimentary­attempts at exploiting the immune system for cancer therapy can be traced back to the late 18th Century, it was not until the past decade that cancer immunotherapeutics have truly entered mainstream clinical practice. Given their potential to stimulate both adaptive and innate antitumor immune responses, dendritic cells (DCs) have come under intense scrutiny in recent years as pharmacological tools for cancer immunotherapy. Conceptually, the clinical effectiveness of this form of active immunotherapy relies on the completion of three critical steps: 1) the DCs used as immunotherapeutic vehicles must properly activate the antitumor immune effector cells of the host, 2) these immune effector cells must be receptive to stimulation by the DCs and be competent to mediate their antitumor effects, which 3) requires overcoming the various immune-inhibitory mechanisms used by the tumor cells. In this review, following a brief overview of the pivotal milestones in the history of cancer immunotherapy, we will introduce the reader to the basic immunobiological and pharmacological principles of active cancer immunotherapy using DCs. We will then discuss how current research is trying to define the optimal parameters for each of the above steps to realize the full clinical potential of DC therapeutics. Given its high suitability for immune interventions, acute myeloid leukemia was chosen here to showcase the latest research trends driving the field of DC-based cancer immunotherapy.


Assuntos
Células Dendríticas/metabolismo , Imunoterapia Ativa/métodos , Neoplasias/imunologia , Neoplasias/terapia , Linfócitos T Citotóxicos/imunologia , Transferência Adotiva/métodos , Anticorpos Monoclonais , Antígenos de Neoplasias/imunologia , Apoptose , Vacinas Anticâncer/imunologia , Técnicas de Cultura de Células , Citocinas/biossíntese , Células Dendríticas/imunologia , Relação Dose-Resposta a Droga , Vias de Administração de Medicamentos , Humanos , Células Matadoras Naturais/imunologia , Complexo Principal de Histocompatibilidade/imunologia , Transdução de Sinais
12.
Stem Cells ; 34(7): 1971-84, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26992046

RESUMO

Transplantation of mesenchymal stem cells (MSCs) into injured or diseased tissue-for the in situ delivery of a wide variety of MSC-secreted therapeutic proteins-is an emerging approach for the modulation of the clinical course of several diseases and traumata. From an emergency point-of-view, allogeneic MSCs have numerous advantages over patient-specific autologous MSCs since "off-the-shelf" cell preparations could be readily available for instant therapeutic intervention following acute injury. Although we confirmed the in vitro immunomodulatory capacity of allogeneic MSCs on antigen-presenting cells with standard coculture experiments, allogeneic MSC grafts were irrevocably rejected by the host's immune system upon either intramuscular or intracerebral transplantation. In an attempt to modulate MSC allograft rejection in vivo, we transduced MSCs with an interleukin-13 (IL13)-expressing lentiviral vector. Our data clearly indicate that prolonged survival of IL13-expressing allogeneic MSC grafts in muscle tissue coincided with the induction of an alternatively activated macrophage phenotype in vivo and a reduced number of alloantigen-reactive IFNγ- and/or IL2-producing CD8(+) T cells compared to nonmodified allografts. Similarly, intracerebral IL13-expressing MSC allografts also exhibited prolonged survival and induction of an alternatively activated macrophage phenotype, although a peripheral T cell component was absent. In summary, this study demonstrates that both innate and adaptive immune responses are effectively modulated in vivo by locally secreted IL13, ultimately resulting in prolonged MSC allograft survival in both muscle and brain tissue. Stem Cells 2016;34:1971-1984.


Assuntos
Sobrevivência de Enxerto/imunologia , Interleucina-13/farmacologia , Isoantígenos/imunologia , Ativação Linfocitária/efeitos dos fármacos , Macrófagos/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Linfócitos T/imunologia , Aloenxertos/efeitos dos fármacos , Aloenxertos/imunologia , Animais , Formação de Anticorpos/efeitos dos fármacos , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Engenharia Genética , Imunomodulação/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Microglia/efeitos dos fármacos , Microglia/patologia , Linfócitos T/efeitos dos fármacos
13.
Mediators Inflamm ; 2017: 6752756, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28626344

RESUMO

Many neuroinflammatory diseases are characterized by massive immune cell infiltration into the central nervous system. Identifying the underlying mechanisms could aid in the development of therapeutic strategies specifically interfering with inflammatory cell trafficking. To achieve this, we implemented and validated a blood-brain barrier (BBB) model to study chemokine secretion, chemokine transport, and leukocyte trafficking in vitro. In a coculture model consisting of a human cerebral microvascular endothelial cell line and human astrocytes, proinflammatory stimulation downregulated the expression of tight junction proteins, while the expression of adhesion molecules and chemokines was upregulated. Moreover, chemokine transport across BBB cocultures was upregulated, as evidenced by a significantly increased concentration of the inflammatory chemokine CCL3 at the luminal side following proinflammatory stimulation. CCL3 transport occurred independently of the chemokine receptors CCR1 and CCR5, albeit that migrated cells displayed increased expression of CCR1 and CCR5. However, overall leukocyte transmigration was reduced in inflammatory conditions, although higher numbers of leukocytes adhered to activated endothelial cells. Altogether, our findings demonstrate that prominent barrier activation following proinflammatory stimulation is insufficient to drive immune cell recruitment, suggesting that additional traffic cues are crucial to mediate the increased immune cell infiltration seen in vivo during neuroinflammation.


Assuntos
Barreira Hematoencefálica/metabolismo , Movimento Celular/fisiologia , Quimiocina CCL3/metabolismo , Inflamação/metabolismo , Astrócitos/citologia , Astrócitos/metabolismo , Transporte Biológico , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Impedância Elétrica , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Inflamação/genética , Molécula 1 de Adesão Intercelular/metabolismo , Leucócitos/citologia , Leucócitos/metabolismo , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Receptores CCR1/genética , Receptores CCR1/metabolismo , Receptores CCR5/genética , Receptores CCR5/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
14.
Glia ; 64(12): 2181-2200, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27685637

RESUMO

Detrimental inflammatory responses in the central nervous system are a hallmark of various brain injuries and diseases. With this study we provide evidence that lentiviral vector-mediated expression of the immune-modulating cytokine interleukin 13 (IL-13) induces an alternative activation program in both microglia and macrophages conferring protection against severe oligodendrocyte loss and demyelination in the cuprizone mouse model for multiple sclerosis (MS). First, IL-13 mediated modulation of cuprizone induced lesions was monitored using T2 -weighted magnetic resonance imaging and magnetization transfer imaging, and further correlated with quantitative histological analyses for inflammatory cell influx, oligodendrocyte death, and demyelination. Second, following IL-13 immune gene therapy in cuprizone-treated eGFP+ bone marrow chimeric mice, we provide evidence that IL-13 directs the polarization of both brain-resident microglia and infiltrating macrophages towards an alternatively activated phenotype, thereby promoting the conversion of a pro-inflammatory environment toward an anti-inflammatory environment, as further evidenced by gene expression analyses. Finally, we show that IL-13 immune gene therapy is also able to limit lesion severity in a pre-existing inflammatory environment. In conclusion, these results highlight the potential of IL-13 to modulate microglia/macrophage responses and to improve disease outcome in a mouse model for MS. GLIA 2016;64:2181-2200.


Assuntos
Doenças Desmielinizantes/terapia , Encefalite/terapia , Terapia Genética/métodos , Interleucina-13 , Macrófagos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Animais , Antígenos de Diferenciação/metabolismo , Transplante de Medula Óssea , Cuprizona/toxicidade , Citocinas/genética , Citocinas/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/diagnóstico por imagem , Modelos Animais de Doenças , Encefalite/induzido quimicamente , Encefalite/diagnóstico por imagem , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interleucina-13/genética , Interleucina-13/metabolismo , Interleucina-13/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibidores da Monoaminoxidase/toxicidade , Proteínas da Mielina/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Transdução Genética
15.
J Neuroinflammation ; 13(1): 113, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27207486

RESUMO

BACKGROUND: Tolerogenic dendritic cells (tolDC) have been postulated as a potent immunoregulatory therapy for autoimmune diseases such as multiple sclerosis (MS). In a previous study, we demonstrated that the administration of antigen-specific vitamin D3 (vitD3) tolDC in mice showing clinical signs of experimental autoimmune encephalomyelitis (EAE; the animal model of MS) resulted in abrogation of disease progression. With the purpose to translate this beneficial therapy to the clinics, we have investigated the effectivity of vitD3-frozen antigen-specific tolDC pulsed with myelin oligodendrocyte glycoprotein 40-55 peptide (f-tolDC-MOG) since it would reduce the cost, functional variability and number of leukapheresis to perform to the patients. METHODS: Mice showing EAE clinical signs were treated with repetitive doses of f-tolDC-MOG. Tolerogenic mechanisms induced by the therapy were analysed by flow cytometry and T cell proliferation assays. RESULTS: Treatment with f-tolDC-MOG was effective in ameliorating clinical signs of mice with EAE, inhibiting antigen-specific reactivity and inducing Treg. In addition, the long-term treatment was well tolerated and leading to a prolonged maintenance of tolerogenicity mediated by induction of Breg, reduction of NK cells and activation of immunoregulatory NKT cells. CONCLUSIONS: The outcomes of this study show that the use of antigen-specific f-tolDC promotes multiple and potent tolerogenic mechanisms. Moreover, these cells can be kept frozen maintaining their tolerogenic properties, which is a relevant step for their translation to the clinic. Altogether, vitD3 f-tolDC-MOG is a potential strategy to arrest the autoimmune destruction in MS patients.


Assuntos
Autoantígenos/uso terapêutico , Colecalciferol/uso terapêutico , Células Dendríticas/fisiologia , Células Dendríticas/transplante , Encefalomielite Autoimune Experimental/terapia , Animais , Transplante de Células/métodos , Criopreservação , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Seguimentos , Células Matadoras Naturais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito/imunologia , Fragmentos de Peptídeos/imunologia , Polissacarídeos/farmacologia , Fatores de Tempo
16.
J Neuroinflammation ; 13(1): 288, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27829467

RESUMO

BACKGROUND: Promoting the neuroprotective and repair-inducing effector functions of microglia and macrophages, by means of M2 polarisation or alternative activation, is expected to become a new therapeutic approach for central nervous system (CNS) disorders in which detrimental pro-inflammatory microglia and/or macrophages display a major contribution to the neuropathology. In this study, we present a novel in vivo approach using intracerebral grafting of mesenchymal stem cells (MSC) genetically engineered to secrete interleukin 13 (IL13-MSC). METHODS: In the first experimental setup, control MSC and IL13-MSC were grafted in the CNS of eGFP+ bone marrow chimaeric C57BL/6 mice to histologically evaluate IL13-mediated expression of several markers associated with alternative activation, including arginase1 and Ym1, on MSC graft-recognising microglia and MSC graft-infiltrating macrophages. In the second experimental setup, IL13-MSC were grafted on the right side (or on both the right and left sides) of the splenium of the corpus callosum in wild-type C57BL/6 mice and in C57BL/6 CX3CR1eGFP/+CCR2RFP/+ transgenic mice. Next, CNS inflammation and demyelination was induced by means of a cuprizone-supplemented diet. The influence of IL13-MSC grafting on neuropathological alterations was monitored by non-invasive T 2-weighted magnetic resonance imaging (MRI) and quantitative histological analyses, as compared to cuprizone-treated mice with control MSC grafts and/or cuprizone-treated mice without MSC injection. RESULTS: In the first part of this study, we demonstrate that MSC graft-associated microglia and MSC graft-infiltrating macrophages are forced into alternative activation upon grafting of IL13-MSC, but not upon grafting of control MSC. In the second part of this study, we demonstrate that grafting of IL13-MSC, in addition to the recruitment of M2 polarised macrophages, limits cuprizone-induced microgliosis, oligodendrocyte death and demyelination. Furthermore, we here demonstrate that injection of IL13-MSC at both sides of the splenium leads to a superior protective effect as compared to a single injection at one side of the splenium. CONCLUSIONS: Controlled and localised production of IL13 by means of intracerebral MSC grafting has the potential to modulate cell graft- and pathology-associated microglial/macrophage responses, and to interfere with oligodendrocyte death and demyelinating events in the cuprizone mouse model.


Assuntos
Cuprizona/toxicidade , Doenças Desmielinizantes , Gliose/etiologia , Interleucina-13/metabolismo , Transplante de Células-Tronco Mesenquimais , Inibidores da Monoaminoxidase/toxicidade , Oligodendroglia/patologia , Animais , Linhagem Celular Transformada , Citocinas/genética , Citocinas/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/cirurgia , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imageamento por Ressonância Magnética , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Básica da Mielina/metabolismo , Oligodendroglia/efeitos dos fármacos
17.
Mediators Inflamm ; 2016: 6789276, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26903712

RESUMO

Previously, we reported that patients with multiple sclerosis (MS) demonstrate improved muscle strength, exercise tolerance, and lean tissue mass following a combined endurance and resistance exercise program. However, the effect of exercise on the underlying disease pathogenesis remains elusive. Since recent evidence supports a crucial role of dendritic cells (DC) in the pathogenesis of MS, we investigated the effect of a 12-week combined exercise program in MS patients on the number and function of DC. We demonstrate an increased number of plasmacytoid DC (pDC) following the exercise program. These pDC display an activated phenotype, as evidenced by increased numbers of circulating CD62L(+) and CD80(+) pDC. Interestingly, the number of CD80(+) pDC positively correlates with the presence of IL-10-producing regulatory type 1 cells (Tr1), an important cell type for maintaining peripheral tolerance to self-antigens. In addition, decreased production of the inflammatory mediators, TNF-α and MMP-9, upon Toll-like receptor (TLR) stimulation was found at the end of the exercise program. Overall, our findings suggest that the 12-week exercise program reduces the secretion of inflammatory mediators upon TLR stimulation and promotes the immunoregulatory function of circulating pDC, suggestive for a favorable impact of exercise on the underlying immunopathogenesis of MS.


Assuntos
Exercício Físico/fisiologia , Inflamação/metabolismo , Esclerose Múltipla/metabolismo , Esclerose Múltipla/terapia , Treinamento Resistido , Células Dendríticas/metabolismo , Feminino , Humanos , Inflamação/sangue , Interleucina-10/metabolismo , Masculino , Metaloproteinase 8 da Matriz/metabolismo , Pessoa de Meia-Idade , Esclerose Múltipla/sangue , Fator de Necrose Tumoral alfa/metabolismo
18.
Cancer Immunol Immunother ; 64(7): 831-42, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25863943

RESUMO

Dendritic cell (DC) vaccination has demonstrated potential in clinical trials as a new effective cancer treatment, but objective and durable clinical responses are confined to a minority of patients. Interferon (IFN)-α, a type-I IFN, can bolster anti-tumor immunity by restoring or increasing the function of DCs, T cells and natural killer (NK) cells. Moreover, type-I IFN signaling on DCs was found to be essential in mice for tumor rejection by the innate and adaptive immune system. Targeted delivery of IFN-α by DCs to immune cells could boost the generation of anti-tumor immunity, while avoiding the side effects frequently associated with systemic administration. Naturally circulating plasmacytoid DCs, major producers of type-I IFN, were already shown capable of inducing tumor antigen-specific T cell responses in cancer patients without severe toxicity, but their limited number complicates their use in cancer vaccination. In the present work, we hypothesized that engineering easily generated human monocyte-derived mature DCs to secrete IFN-α using mRNA electroporation enhances their ability to promote adaptive and innate anti-tumor immunity. Our results show that IFN-α mRNA electroporation of DCs significantly increases the stimulation of tumor antigen-specific cytotoxic T cell as well as anti-tumor NK cell effector functions in vitro through high levels of IFN-α secretion. Altogether, our findings mark IFN-α mRNA-electroporated DCs as potent inducers of both adaptive and innate anti-tumor immunity and pave the way for clinical trial evaluation in cancer patients.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Interferon-alfa/metabolismo , Proteínas WT1/imunologia , Antígenos de Neoplasias/genética , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células/genética , Células Cultivadas , Células Dendríticas/citologia , Células Dendríticas/transplante , Eletroporação , Humanos , Imunoterapia Adotiva , Interferon-alfa/genética , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Neoplasias/imunologia , RNA Mensageiro/administração & dosagem , RNA Mensageiro/genética , Proteínas WT1/genética
19.
NMR Biomed ; 28(4): 505-13, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25802215

RESUMO

Conventional MRI is frequently used during the diagnosis of multiple sclerosis but provides only little additional pathological information. Proton MRS ((1) H-MRS), however, provides biochemical information on the lesion pathology by visualization of a spectrum of metabolites. In this study we aimed to better understand the changes in metabolite concentrations following demyelination of the white matter. Therefore, we used the cuprizone model, a well-established mouse model to mimic type III human multiple sclerosis demyelinating lesions. First, we identified CX3 CL1/CX3 CR1 signaling as a major regulator of microglial activity in the cuprizone mouse model. Compared with control groups (heterozygous CX3 CR1(+/-) C57BL/6 mice and wild type CX3 CR1(+/+) C57BL/6 mice), microgliosis, astrogliosis, oligodendrocyte cell death and demyelination were shown to be highly reduced or absent in CX3 CR1(-/-) C57BL/6 mice. Second, we show that (1) H-MRS metabolite spectra are different when comparing cuprizone-treated CX3 CR1(-/-) mice showing mild demyelination with cuprizone-treated CX3 CR1(+/+) mice showing severe demyelination and demyelination-associated inflammation. Following cuprizone treatment, CX3 CR1(+/+) mice show a decrease in the Glu, tCho and tNAA concentrations as well as an increased Tau concentration. In contrast, following cuprizone treatment CX3 CR1(-/-) mice only showed a decrease in tCho and tNAA concentrations. Therefore, (1) H-MRS might possibly allow us to discriminate demyelination from demyelination-associated inflammation via changes in Tau and Glu concentration. In addition, the observed decrease in tCho concentration in cuprizone-induced demyelinating lesions should be further explored as a possible diagnostic tool for the early identification of human MS type III lesions.


Assuntos
Doenças Desmielinizantes/patologia , Gliose/patologia , Imageamento por Ressonância Magnética , Neuroimagem/métodos , Espectroscopia de Prótons por Ressonância Magnética , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/análise , Química Encefálica , Colina/análise , Creatina/análise , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/diagnóstico , Dipeptídeos/análise , Modelos Animais de Doenças , Feminino , Gliose/induzido quimicamente , Gliose/diagnóstico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oligodendroglia/patologia , Fosfocreatina/análise
20.
Acta Haematol ; 133(1): 36-51, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25116092

RESUMO

The Polycythemia Vera Study Group (PVSG) and WHO classifications distinguished the Philadelphia (Ph(1)) chromosome-positive chronic myeloid leukemia from the Ph(1)-negative myeloproliferative neoplasms (MPN) essential thrombocythemia (ET), polycythemia vera (PV) and primary myelofibrosis (MF) or primary megakaryocytic granulocytic myeloproliferation (PMGM). Half of PVSG/WHO-defined ET patients show low serum erythropoietin levels and carry the JAK2(V617F) mutation, indicating prodromal PV. The positive predictive value of a JAK2(V617F) PCR test is 95% for the diagnosis of PV, and about 50% for ET and MF. The WHO-defined JAK2(V617F)-positive ET comprises three ET phenotypes at clinical and bone marrow level when the integrated WHO and European Clinical, Molecular and Pathological (ECMP) criteria are applied: normocellular ET (WHO-ET), hypercellular ET due to increased erythropoiesis (prodromal PV) and hypercellular ET associated with megakaryocytic granulocytic myeloproliferation (EMGM). Four main molecular types of clonal MPN can be distinguished: JAK2(V617F)-positive ET and PV; JAK2 wild-type ET carrying the MPL(515); mutations in the calreticulin (CALR) gene in JAK2/MPL wild-type ET and MF, and a small proportion of JAK2/MPL/CALR wild-type ET and MF patients. The JAK2(V617F) mutation load is low in heterozygous normocellular WHO-ET. The JAK2(V617F) mutation load in hetero-/homozygous PV and EMGM is clearly related to MPN disease burden in terms of splenomegaly, constitutional symptoms and fibrosis. The JAK2 wild-type ET carrying the MPL(515) mutation is featured by clustered small and giant megakaryocytes with hyperlobulated stag-horn-like nuclei, in a normocellular bone marrow (WHO-ET), and lacks features of PV. JAK2/MPL wild-type, CALR mutated hypercellular ET associated with PMGM is featured by dense clustered large immature dysmorphic megakaryocytes and bulky (cloud-like) hyperchromatic nuclei, which are never seen in WHO-ECMP-defined JAK2(V617F) mutated ET, EMGM and PV, and neither in JAK2 wild-type ET carrying the MPL(515) mutation. Two thirds of JAK2/MPL wild-type ET and MF patients carry one of the CALR mutations as the cause of the third distinct MPN entity. WHO-ECMP criteria are recommended to diagnose, classify and stage the broad spectrum of MPN of various molecular etiologies.


Assuntos
Transtornos Mieloproliferativos/diagnóstico , Transtornos Mieloproliferativos/genética , Medula Óssea/patologia , Calreticulina/genética , Éxons , História do Século XX , História do Século XXI , Humanos , Janus Quinase 2/genética , Mutação , Transtornos Mieloproliferativos/história , Policitemia Vera/diagnóstico , Policitemia Vera/genética , Guias de Prática Clínica como Assunto , Mielofibrose Primária/diagnóstico , Mielofibrose Primária/genética , Receptores de Trombopoetina/genética , Trombocitemia Essencial/diagnóstico , Trombocitemia Essencial/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA