Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Circulation ; 135(10): 978-995, 2017 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-27834668

RESUMO

BACKGROUND: Reprogramming of cardiac fibroblasts into induced cardiomyocyte-like cells in situ represents a promising strategy for cardiac regeneration. A combination of 3 cardiac transcription factors, Gata4, Mef2c, and Tbx5 (GMT), can convert fibroblasts into induced cardiomyocyte-like cells, albeit with low efficiency in vitro. METHODS: We screened 5500 compounds in primary cardiac fibroblasts to identify the pathways that can be modulated to enhance cardiomyocyte reprogramming. RESULTS: We found that a combination of the transforming growth factor-ß inhibitor SB431542 and the WNT inhibitor XAV939 increased reprogramming efficiency 8-fold when added to GMT-overexpressing cardiac fibroblasts. The small molecules also enhanced the speed and quality of cell conversion; we observed beating cells as early as 1 week after reprogramming compared with 6 to 8 weeks with GMT alone. In vivo, mice exposed to GMT, SB431542, and XAV939 for 2 weeks after myocardial infarction showed significantly improved reprogramming and cardiac function compared with those exposed to only GMT. Human cardiac reprogramming was similarly enhanced on transforming growth factor-ß and WNT inhibition and was achieved most efficiently with GMT plus myocardin. CONCLUSIONS: Transforming growth factor-ß and WNT inhibitors jointly enhance GMT-induced direct cardiac reprogramming from cardiac fibroblasts in vitro and in vivo and provide a more robust platform for cardiac regeneration.


Assuntos
Benzamidas/farmacologia , Reprogramação Celular/efeitos dos fármacos , Dioxóis/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Fatores de Transcrição/metabolismo , Animais , Benzamidas/uso terapêutico , Células Cultivadas , Dioxóis/uso terapêutico , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Coração/diagnóstico por imagem , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Humanos , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Imageamento por Ressonância Magnética , Camundongos , Infarto do Miocárdio/tratamento farmacológico , Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/metabolismo , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/metabolismo
2.
Nature ; 460(7256): 705-10, 2009 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-19578358

RESUMO

MicroRNAs (miRNAs) are regulators of myriad cellular events, but evidence for a single miRNA that can efficiently differentiate multipotent stem cells into a specific lineage or regulate direct reprogramming of cells into an alternative cell fate has been elusive. Here we show that miR-145 and miR-143 are co-transcribed in multipotent murine cardiac progenitors before becoming localized to smooth muscle cells, including neural crest stem-cell-derived vascular smooth muscle cells. miR-145 and miR-143 were direct transcriptional targets of serum response factor, myocardin and Nkx2-5 (NK2 transcription factor related, locus 5) and were downregulated in injured or atherosclerotic vessels containing proliferating, less differentiated smooth muscle cells. miR-145 was necessary for myocardin-induced reprogramming of adult fibroblasts into smooth muscle cells and sufficient to induce differentiation of multipotent neural crest stem cells into vascular smooth muscle. Furthermore, miR-145 and miR-143 cooperatively targeted a network of transcription factors, including Klf4 (Kruppel-like factor 4), myocardin and Elk-1 (ELK1, member of ETS oncogene family), to promote differentiation and repress proliferation of smooth muscle cells. These findings demonstrate that miR-145 can direct the smooth muscle fate and that miR-145 and miR-143 function to regulate the quiescent versus proliferative phenotype of smooth muscle cells.


Assuntos
Linhagem da Célula , MicroRNAs/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Feminino , Regulação da Expressão Gênica , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/metabolismo , Fator 4 Semelhante a Kruppel , Masculino , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Modelos Biológicos , Miocárdio/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Doenças Vasculares/metabolismo , Proteínas Elk-4 do Domínio ets/metabolismo
3.
Curr Opin Genet Dev ; 23(5): 574-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23993230

RESUMO

Loss of cardiomyocytes from cardiovascular disease is irreversible and current therapeutic strategies do not redress the loss of myocardium after injury. The discovery that endogenous fibroblasts in the heart can be reprogrammed to cardiomyocyte-like cells after myocardial infarction and heart function is improved subsequently has strong implications in bringing this treatment paradigm to the clinic. Here we discuss the advances in direct cardiac reprogramming that will potentially act as a springboard in the generation of effective approaches to restoring cardiac function after injury.


Assuntos
Diferenciação Celular , Infarto do Miocárdio/terapia , Miocárdio/citologia , Miócitos Cardíacos/citologia , Animais , Reprogramação Celular/genética , Fibroblastos/citologia , Fibroblastos/transplante , Humanos , Camundongos , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Regeneração/genética
4.
Nat Protoc ; 8(6): 1204-15, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23722259

RESUMO

Cardiac fibroblasts can be reprogrammed to cardiomyocyte-like cells by the introduction of three transcription factors: Gata4, Mef2c and Tbx5 (collectively referred to here as GMT). Resident cardiac fibroblasts can be converted in vivo into induced cardiomyocyte-like cells (iCMs) that closely resemble endogenous cardiomyocytes and electrically integrate with the host myocardium. In contrast, in vitro reprogramming yields many partially reprogrammed iCMs, with a few that reprogram fully into contracting myocytes (~3 out of 10,000 GMT-transduced cells). iCMs can be observed as early as 3 d after viral infection, and they continue to mature over 2 months before beating is observed. Despite the success of multiple groups, the inefficiency of in vitro reprogramming has made it challenging for others. However, given the advantages of in vitro iCMs for performing mechanistic studies and, if refined, for testing drugs or small molecules for personalized medicine and modeling cardiac disease in a dish, it is important to standardize the protocol to improve reproducibility and enhance the technology further. Here we describe a detailed step-by-step protocol for in vitro cardiac reprogramming using retroviruses encoding GMT.


Assuntos
Transdiferenciação Celular/fisiologia , Fibroblastos/citologia , Miocárdio/citologia , Miócitos Cardíacos/citologia , Animais , Transdiferenciação Celular/genética , Fator de Transcrição GATA4/metabolismo , Vetores Genéticos , Fatores de Transcrição MEF2/metabolismo , Camundongos , Retroviridae , Proteínas com Domínio T/metabolismo
5.
PLoS One ; 3(10): e3346, 2008 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-18833327

RESUMO

BACKGROUND: The epidermal cells of the C. elegans embryo undergo coordinated cell shape changes that result in the morphogenetic process of elongation. The cytoskeletal ankyrin repeat protein VAB-19 is required for cell shape changes and localizes to cell-matrix attachment structures. The molecular functions of VAB-19 in this process are obscure, as no previous interactors for VAB-19 have been described. METHODOLOGY/PRINCIPAL FINDINGS: In screens for VAB-19 binding proteins we identified the signaling adaptor EPS-8. Within C. elegans epidermal cells, EPS-8 and VAB-19 colocalize at cell-matrix attachment structures. The central domain of EPS-8 is necessary and sufficient for its interaction with VAB-19. eps-8 null mutants, like vab-19 mutants, are defective in epidermal elongation and in epidermal-muscle attachment. The eps-8 locus encodes two isoforms, EPS-8A and EPS-8B, that appear to act redundantly in epidermal elongation. The function of EPS-8 in epidermal development involves its N-terminal PTB and central domains, and is independent of its C-terminal SH3 and actin-binding domains. VAB-19 appears to act earlier in the biogenesis of attachment structures and may recruit EPS-8 to these structures. CONCLUSIONS/SIGNIFICANCE: EPS-8 and VAB-19 define a novel pathway acting at cell-matrix attachments to regulate epithelial cell shape. This is the first report of a role for EPS-8 proteins in cell-matrix attachments. The existence of EPS-8B-like isoforms in Drosophila suggests this function of EPS-8 proteins could be conserved among other organisms.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Transporte/fisiologia , Proteínas do Citoesqueleto/metabolismo , Epiderme/crescimento & desenvolvimento , Actinas/metabolismo , Animais , Proteínas de Transporte/metabolismo , Epistasia Genética , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA