Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 23(12): 7671-7687, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34398481

RESUMO

Studies on bacterial plant diseases have thus far been focused on the single bacterial species causing the disease, with very little attention given to the many other microorganisms present in the microbiome. This study intends to use pathobiome analysis of the rice foot rot disease, caused by Dickeya zeae, as a case study to investigate the effects of this bacterial pathogen to the total resident microbiome and to highlight possible interactions between the pathogen and the members of the community involved in the disease process. The microbiome of asymptomatic and the pathobiome of foot-rot symptomatic field-grown rice plants over two growing periods and belonging to two rice cultivars were determined via 16S rRNA gene amplicon sequencing. Results showed that the presence of D. zeae is associated with an alteration of the resident bacterial community in terms of species composition, abundance and richness, leading to the formation of microbial consortia linked to the disease state. Several bacterial species were significantly co-presented with the pathogen in the two growing periods suggesting that they could be involved in the disease process. Besides, culture-dependent isolation and in planta inoculation studies of a bacterial member of the pathobiome, identified as positive correlated with the pathogen in our in silico analysis, indicated that it benefits from the presence of D. zeae. A similar microbiome/pathobiome experiment was also performed in a symptomatically different rice disease evidencing that not all plant diseases have the same consequence/relationship with the plant microbiome. This study moves away from a pathogen-focused stance and goes towards a more ecological perception considering the effect of the entire microbial community which could be involved in the pathogenesis, persistence, transmission and evolution of plant pathogens.


Assuntos
Microbiota , Oryza , Dickeya , Enterobacteriaceae/genética , Microbiota/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia , RNA Ribossômico 16S/genética
2.
Mol Plant Microbe Interact ; 33(2): 349-363, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31609645

RESUMO

Endophytes live inside plants and are often beneficial. Kosakonia is a novel bacterial genus that includes many diazotrophic plant-associated isolates. Plant-bacteria studies on two rice endophytic Kosakonia beneficial strains were performed, including comparative genomics, secretome profiling, in planta tests, and a field release trial. The strains are efficient rhizoplane and root endosphere colonizers and localized in the root cortex. Secretomics revealed 144 putative secreted proteins, including type VI secretory system (T6SS) proteins. A Kosakonia T6SS genomic knock-out mutant showed a significant decrease in rhizoplane and endosphere colonization ability. A field trial using rice seed inoculated with Kosakonia spp. showed no effect on plant growth promotion upon nitrogen stress and microbiome studies revealed that Kosakonia spp. were significantly more present in the inoculated rice. Comparative genomics indicated that several protein domains were enriched in plant-associated Kosakonia spp. This study highlights that Kosakonia is an important, recently classified genus involved in plant-bacteria interaction.


Assuntos
Endófitos , Enterobacteriaceae , Microbiota , Oryza , Sistemas de Secreção Tipo VI , Endófitos/fisiologia , Enterobacteriaceae/fisiologia , Genômica , Interações Hospedeiro-Patógeno/fisiologia , Oryza/microbiologia , Raízes de Plantas , Sementes/microbiologia , Sistemas de Secreção Tipo VI/metabolismo
3.
Microbiology (Reading) ; 166(1): 73-84, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31621557

RESUMO

Azelaic acid is a dicarboxylic acid that has recently been shown to play a role in plant-bacteria signalling and also occurs naturally in several cereals. Several bacteria have been reported to be able to utilize azelaic acid as a unique source of carbon and energy, including Pseudomonas nitroreducens. In this study, we utilize P. nitroreducens as a model organism to study bacterial degradation of and response to azelaic acid. We report genetic evidence of azelaic acid degradation and the identification of a transcriptional regulator that responds to azelaic acid in P. nitroreducens DSM 9128. Three mutants possessing transposons in genes of an acyl-CoA ligase, an acyl-CoA dehydrogenase and an isocitrate lyase display a deficient ability in growing in azelaic acid. Studies on transcriptional regulation of these genes resulted in the identification of an IclR family repressor that we designated as AzeR, which specifically responds to azelaic acid. A bioinformatics survey reveals that AzeR is confined to a few proteobacterial genera that are likely to be able to degrade and utilize azelaic acid as the sole source of carbon and energy.


Assuntos
Ácidos Dicarboxílicos/metabolismo , Pseudomonas/metabolismo , Fatores de Transcrição/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ácidos Dicarboxílicos/química , Regulação Bacteriana da Expressão Gênica , Estrutura Molecular , Mutação , Filogenia , Regiões Promotoras Genéticas , Pseudomonas/classificação , Pseudomonas/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética
4.
Appl Environ Microbiol ; 86(13)2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32332134

RESUMO

Endophytes are microorganisms that live inside plants and are often beneficial for the host. Kosakonia is a novel bacterial genus that includes several species that are diazotrophic and plant associated. This study revealed two quorum sensing-related LuxR solos, designated LoxR and PsrR, in the plant endophyte Kosakonia sp. strain KO348. LoxR modeling and biochemical studies demonstrated that LoxR binds N-acyl homoserine lactones (AHLs) in a promiscuous way. PsrR, on the other hand, belongs to the subfamily of plant-associated-bacterium (PAB) LuxR solos that respond to plant compounds. Target promoter studies as well as modeling and phylogenetic comparisons suggest that PAB LuxR solos are likely to respond to different plant compounds. Finally, LoxR is involved in the regulation of T6SS and PsrR plays a role in root endosphere colonization.IMPORTANCE Cell-cell signaling in bacteria allows a synchronized and coordinated behavior of a microbial community. LuxR solos represent a subfamily of proteins in proteobacteria which most commonly detect and respond to signals produced exogenously by other microbes or eukaryotic hosts. Here, we report that a plant-beneficial bacterial endophyte belonging to the novel genus of Kosakonia possesses two LuxR solos; one is involved in the detection of exogenous N-acyl homoserine lactone quorum sensing signals and the other in detecting a compound(s) produced by the host plant. These two Kosakonia LuxR solos are therefore most likely involved in interspecies and interkingdom signaling.


Assuntos
Proteínas de Bactérias/genética , Endófitos/genética , Enterobacteriaceae/genética , Proteínas Repressoras/genética , Transativadores/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Endófitos/metabolismo , Enterobacteriaceae/metabolismo , Oryza/microbiologia , Filogenia , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Alinhamento de Sequência , Simbiose/genética , Transativadores/química , Transativadores/metabolismo
5.
BMC Microbiol ; 14: 274, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25394860

RESUMO

BACKGROUND: Pseudomonas fuscovaginae (Pfv) is an emerging plant pathogen of rice and also of other gramineae plants. It causes sheath brown rot disease in rice with symptoms that are characterized by brown lesions on the flag leaf sheath, grain discoloration and sterility. It was first isolated as a high altitude pathogen in Japan and has since been reported in several countries throughout the world. Pfv is a broad host range pathogen and very little is known about its virulence mechanisms. RESULTS: An in planta screen of 1000 random independent Tn5 genomic mutants resulted in the isolation of nine mutants which showed altered virulence. Some of these isolates are mutated for functions which are known to be virulence associated factors in other phytopathogenic bacteria (eg. pil gene, phytotoxins and T6SS) and others might represent novel virulence loci. CONCLUSIONS: Being an emerging pathogen worldwide, the broad host range pathogen Pfv has not yet been studied for its virulence functions. The roles of the nine loci identified in the in planta screen are discussed in relation to pathogenicity of Pfv. In summary, this article reports a first study on the virulence of this pathogen involving in planta screening studies and suggests the presence of several virulence features with known and novel functions in the Pseudomonas group of bacteria.


Assuntos
Doenças das Plantas/microbiologia , Poaceae/microbiologia , Pseudomonas/crescimento & desenvolvimento , Pseudomonas/genética , Elementos de DNA Transponíveis , Técnicas de Inativação de Genes , Japão , Mutagênese Insercional , Pseudomonas/patogenicidade , Virulência
6.
Microb Biotechnol ; 17(2): e14330, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38291799

RESUMO

The use of microbial inoculants in agriculture as biofertilisers and/or biopesticides is an appealing alternative to replace or reduce the practice of agrochemicals. Plant microbiota studies are revealing the different bacterial groups which are populating plant microbiomes re-energising the plant probiotic bacteria (PPB) translational research sector. Some single-microbial strain bioinoculants have proven valid in agriculture (e.g., based on Trichoderma, mycorrhiza or rhizobia); however, it is now recommended to consider multistrain consortia since plant-beneficial effects are often a result of community-level interactions in plant microbiomes. A limiting step is the selection of a fitting combination of microbial strains in order to accomplish the best beneficial effect upon plant inoculation. In this study, we have used a subset of 23 previously identified and characterised rice-beneficial bacterial colonisers to design and test a series of associated experiments aimed to identify potential PPB consortia which are able to co-colonise and induce plant growth promotion. Bacterial strains were co-inoculated in vitro and in planta using several different methods and their co-colonisation and co-persistence monitored. Results include the identification of two 5-strain and one 2-strain consortia which displayed plant growth-promoting features. Future practical applications of microbiome research must include experiments aimed at identifying consortia of bacteria which can be most effective as crop amendments.


Assuntos
Inoculantes Agrícolas , Microbiota , Raízes de Plantas/microbiologia , Bactérias/genética , Plantas
7.
Plant Pathol J ; 40(2): 225-232, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38606451

RESUMO

The microbiomes of two important rice cultivars in Vietnam which differ by their susceptibility to the bacterial leaf blight (BLB) disease were analyzed through 16S rRNA amplicon technology. A higher number of operational taxonomic units and alpha-diversity indices were shown in the BLB-resistant LA cultivar than in the BLB-susceptible TB cultivar. The BLB pathogen Xanthomonas was scantly found (0.003%) in the LA cultivar, whereas was in a significantly higher ratio in the TB cultivar (1.82%), reflecting the susceptibility to BLB of these cultivars. Of special interest was the genus Acholeplasma presented in the BLB-resistant LA cultivar at a high relative abundance (22.32%), however, was minor in the BLB-sensitive TB cultivar (0.09%), raising a question about its roles in controlling the Xanthomonas low in the LA cultivar. It is proposed that Acholeplasma once entered the host plant would hamper other phytopathogens, i.e. Xanthomonas, by yet unknown mechanisms, of which the triggering of the host plants to produce secondary metabolites against pathogens could be a testable hypothesis.

8.
Appl Environ Microbiol ; 78(3): 726-34, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22113916

RESUMO

In many bacteria, quorum sensing (QS) systems rely on a signal receptor and a synthase producing N-acyl-homoserine lactone(s) as the signal molecule(s). In some species, the rsaL gene, located between the signal receptor and synthase genes, encodes a repressor limiting signal synthase expression and hence signal molecule production. Here we investigate the molecular mechanism of action of the RsaL protein in the plant growth-promoting rhizobacterium Pseudomonas putida WCS358 (RsaL(WCS)). In P. putida WCS358, RsaL(WCS) displayed a strong repressive effect on the promoter of the QS signal synthase gene, ppuI, while it did not repress the same promoter in Pseudomonas aeruginosa. DNase I protection assays showed that purified RsaL(WCS) specifically binds to ppuI on a DNA region overlapping the predicted σ(70)-binding site, but such protection was observed only at high protein concentrations. Accordingly, electrophoretic mobility shift assays showed that the RsaL(WCS) protein was not able to form stable complexes efficiently with a probe encompassing the ppuI promoter, while it formed stable complexes with the promoter of lasI, the gene orthologous to ppuI in P. aeruginosa. This difference seems to be dictated by the lower dyad symmetry of the RsaL(WCS)-binding sequence on the ppuI promoter relative to that on the lasI promoter. Comparison of the results obtained in vivo and in vitro suggests that RsaL(WCS) needs a molecular interactor/cofactor specific for P. putida WCS358 to repress ppuI transcription. We also demonstrate that RsaL(WCS) regulates siderophore-mediated growth limitation of plant pathogens and biofilm formation, two processes relevant for plant growth-promoting activity.


Assuntos
Regulação Bacteriana da Expressão Gênica , Pseudomonas putida/fisiologia , Percepção de Quorum , Proteínas Repressoras/metabolismo , Proteínas de Bactérias/metabolismo , Pegada de DNA , DNA Bacteriano/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Plantas/microbiologia , Regiões Promotoras Genéticas , Ligação Proteica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiologia , Pseudomonas putida/genética , Sideróforos/metabolismo
9.
Environ Int ; 164: 107272, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35526297

RESUMO

The current COVID-19 pandemic has highlighted the importance of aerosol-based transmission of human pathogens; this therefore calls for novel medical devices which are able to sterilize contaminated aerosols. Here we describe a new laser device able to sterilize droplets containing either viruses or bacteria. Using engineered viral particles, we determined the 10,600 nm wavelength as the most efficient and exploitable laser source to be manufactured in a commercial device. Given the lack of existing working models to reproduce a human aerosol containing living microbial particles, we developed a new system mimicking human droplet formation and preserving bacterial and viral viability. This evidenced the efficacy of 10,600 nm laser light to kill two aerosol transmitted human pathogens, Legionella pneumophila and SARS-CoV-2. The minimal exposure time of <15 ms was required for the inactivation of over 99% pathogens in the aerosol; this is a key element in the design of a device that is safe and can be used in preventing inter-individual transmission. This represents a major advantage over existing devices, which mainly aim at either purifying incoming air by filters or sterilizing solid surfaces, which are not the major transmission routes for airborne communicable diseases.


Assuntos
COVID-19 , SARS-CoV-2 , Aerossóis , Humanos , Lasers , Pandemias , Esterilização
10.
Front Plant Sci ; 13: 908349, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845658

RESUMO

Flooding events caused by severe rains and poor soil drainage can interfere with plant germination and seedling establishment. Rice is one of the cereal crops that has unique germination strategies under flooding. One of these strategies is based on the fast coleoptile elongation in order to reach the water surface and re-establish the contact with the air. Microorganisms can contribute to plant health via plant growth promoters and provide protection from abiotic stresses. To characterise the community composition of the microbiome in rice germination under submergence, a 16S rRNA gene profiling metagenomic analysis was performed of temperate japonica rice varieties Arborio and Lamone seedlings, which showed contrasting responses in terms of coleoptile length when submerged. This analysis showed a distinct microbiota composition of Arborio seeds under submergence, which are characterised by the development of a long coleoptile. To examine the potential function of microbial communities under submergence, culturable bacteria were isolated, identified and tested for plant growth-promoting activities. A subgroup of isolated bacteria showed the capacity to hydrolyse starch and produce indole-related compounds under hypoxia. Selected bacteria were inoculated in seeds to evaluate their effect on rice under submergence, showing a response that is dependent on the rice genotype. Our findings suggest that endophytic bacteria possess plant growth-promoting activities that can substantially contribute to rice seedling establishment under submergence.

11.
Environ Microbiol ; 13(1): 145-162, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20701623

RESUMO

Pseudomonas fuscovaginae is a Gram-negative fluorescent pseudomonad pathogenic towards several plant species. Despite its importance as a plant pathogen, no molecular studies of virulence have thus far been reported. In this study we show that P. fuscovaginae possesses two conserved N-acyl homoserine lactone (AHL) quorum sensing (QS) systems which we designated PfsI/R and PfvI/R. The PfsI/R system is homologous to the BviI/R system of Burkholderia vietnamiensis and produces and responds to C10-HSL and C12-HSL whereas PfvI/R is homologous to the LasI/R system of Pseudomonas aeruginosa and produces several long-chain 3-oxo-HSLs and responds to 3-oxo-C10-HSL and 3-oxo-C12-HSL and at high AHL concentrations can also respond to structurally different long-chain AHLs. Both systems were found to be negatively regulated by a repressor protein which was encoded by a gene located intergenically between the AHL synthase and LuxR-family response regulator. The pfsI/R system was regulated by a novel repressor designated RsaM while the pfvI/R system was regulated by both the RsaL repressor and by RsaM. The two systems are not transcriptionally hierarchically organized but share a common AHL response and both are required for plant virulence. Pseudomonas fuscovaginae has therefore a unique complex regulatory network composed of at least two different repressors which directly regulate the AHL QS systems and pathogenicity.


Assuntos
Acil-Butirolactonas/metabolismo , Pseudomonas/metabolismo , Pseudomonas/patogenicidade , Percepção de Quorum , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Clonagem Molecular , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Homosserina/análogos & derivados , Homosserina/metabolismo , Dados de Sequência Molecular , Mutação , Oryza/microbiologia , Doenças das Plantas/microbiologia , Pseudomonas/genética , Proteínas Repressoras/metabolismo , Especificidade por Substrato , Virulência
12.
mSphere ; 6(2)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33789944

RESUMO

LuxR solos are related to quorum sensing (QS) LuxR family regulators; however, they lack a cognate LuxI family protein. LuxR solos are widespread and almost exclusively found in proteobacteria. In this study, we investigated the distribution and conservation of LuxR solos in the fluorescent pseudomonads group. Our analysis of more than 600 genomes revealed that the majority of fluorescent Pseudomonas spp. carry one or more LuxR solos, occurring considerably more frequently than complete LuxI/LuxR archetypical QS systems. Based on the adjacent gene context and conservation of the primary structure, nine subgroups of LuxR solos have been identified that are likely to be involved in the establishment of communication networks. Modeling analysis revealed that the majority of subgroups shows some substitutions at the invariant amino acids of the ligand-binding pocket of QS LuxRs, raising the possibility of binding to non-acyl-homoserine lactone (AHL) ligands. Several mutants and gene expression studies on some LuxR solos belonging to different subgroups were performed in order to shed light on their response. The commonality of LuxR solos among fluorescent pseudomonads is an indication of their important role in cell-cell signaling.IMPORTANCE Cell-cell communication in bacteria is being extensively studied in simple settings and uses chemical signals and cognate regulators/receptors. Many Gram-negative proteobacteria use acyl-homoserine lactones (AHLs) synthesized by LuxI family proteins and cognate LuxR-type receptors to regulate their quorum sensing (QS) target loci. AHL-QS circuits are the best studied QS systems; however, many proteobacterial genomes also contain one or more LuxR solos, which are QS-related LuxR proteins which are unpaired to a cognate LuxI. A few LuxR solos have been implicated in intraspecies, interspecies, and interkingdom signaling. Here, we report that LuxR solo homologs occur considerably more frequently than complete LuxI/LuxR QS systems within the Pseudomonas fluorescens group of species and that they are characterized by different genomic organizations and primary structures and can be subdivided into several subgroups. The P. fluorescens group consists of more than 50 species, many of which are found in plant-associated environments. The role of LuxR solos in cell-cell signaling in fluorescent pseudomonads is discussed.


Assuntos
Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Transativadores/genética , Transativadores/metabolismo , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Percepção de Quorum , Proteínas Repressoras/classificação , Transativadores/classificação
13.
Plants (Basel) ; 10(7)2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34371669

RESUMO

The development of biotechnologies based on beneficial microorganisms for improving soil fertility and crop yields could help to address many current agriculture challenges, such as food security, climate change, pest control, soil depletion while decreasing the use of chemical fertilizers and pesticides. Plant growth-promoting (PGP) microbes can be used as probiotics in order to increase plant tolerance/resistance to abiotic/biotic stresses and in this context strains belonging to the Pseudomonas chlororaphis group have shown to have potential as PGP candidates. In this study a new P. chlororaphis isolate is reported and tested for (i) in vitro PGP features, (ii) whole-genome sequence analysis, and (iii) its effects on the rhizosphere microbiota composition, plant growth, and different plant genes expression levels in greenhouse experiments. Results showed that P. chlororaphis ST9 is an efficient rice root colonizer which integrates into the plant resident-microbiota and affects the expression of several plant genes. The potential use of this P. chlororaphis strain as a plant probiotic is discussed.

14.
Mol Plant Microbe Interact ; 22(12): 1514-22, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19888817

RESUMO

The gram-negative phytopathogen Pseudomonas corrugata has an acyl-homoserine lactone (AHL) quorum-sensing (QS) system called PcoI/PcoR that is involved in virulence on tomato. This work identifies, downstream of pcoI, a gene designated rfiA, which we demonstrate is directly linked to QS by cotranscription with pcoI. The deduced RfiA protein contains a DNA-binding domain characteristic of the LuxR family but lacks the autoinducer-binding terminus characteristic of the QS LuxR-family proteins. We also identified, downstream of rfiA, an operon designated pcoABC, encoding for the three components of a tripartite resistance nodulation-cell-division (RND) transporter system. The expression of pcoABC is regulated by RfiA. We found that lipodepsipeptide (LDP) production is cell density dependent and mutants of pcoI, pcoR, and rfiA are unable to inhibit the growth of the LDP-sensitive microorganisms Rhodotorula pilimanae and Bacillus megaterium. P. corrugata rfiA mutants were significantly reduced in their ability to cause necrosis development in tomato pith. In addition, it was established that PcoR in the absence of AHL also played a role in virulence on tomato. A model for the role of PcoI, PcoR, and RfiA in tomato pith necrosis is presented.


Assuntos
Proteínas de Bactérias/metabolismo , Pseudomonas/metabolismo , Pseudomonas/patogenicidade , Percepção de Quorum , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Solanum lycopersicum/microbiologia , Dados de Sequência Molecular , Mutação , Doenças das Plantas/microbiologia , Pseudomonas/genética , Fatores de Transcrição/genética , Virulência
15.
Appl Environ Microbiol ; 75(15): 5131-40, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19525275

RESUMO

Pseudomonas aeruginosa possesses three quorum-sensing (QS) systems which are key in the expression of a large number of genes, including many virulence factors. Most studies of QS in P. aeruginosa have been performed in clinical isolates and have therefore focused on its role in pathogenicity. P. aeruginosa, however, is regarded as a ubiquitous organism capable of colonizing many different environments and also of establishing beneficial associations with plants. In this study we examined the role of the two N-acyl homoserine lactone systems known as RhlI/R and LasI/R in the environmental rice rhizosphere isolate P. aeruginosa PUPa3. Both the Rhl and Las systems are involved in the regulation of plant growth-promoting traits. The environmental P. aeruginosa PUPa3 is pathogenic in two nonmammalian infection models, and only the double las rhl mutants are attenuated for virulence. In fact it was established that the two QS systems are not hierarchically organized and that they are both important for the colonization of the rice rhizosphere. This is an in-depth genetic and molecular study of QS in an environmental P. aeruginosa strain and highlights several differences with QS regulation in the clinical isolate PAO1.


Assuntos
Proteínas de Bactérias/fisiologia , Ligases/fisiologia , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum , Transativadores/fisiologia , Fatores de Transcrição/fisiologia , Animais , Proteínas de Bactérias/genética , Caenorhabditis elegans/microbiologia , DNA Bacteriano/química , DNA Bacteriano/genética , Ligases/genética , Dados de Sequência Molecular , Mariposas/microbiologia , Oryza/microbiologia , Raízes de Plantas/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Análise de Sequência de DNA , Análise de Sobrevida , Transativadores/genética , Fatores de Transcrição/genética , Virulência
16.
BMC Microbiol ; 9: 200, 2009 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-19761586

RESUMO

BACKGROUND: Burkholderia cenocepacia are opportunistic Gram-negative bacteria that can cause chronic pulmonary infections in patients with cystic fibrosis. These bacteria demonstrate a high-level of intrinsic antibiotic resistance to most clinically useful antibiotics complicating treatment. We previously identified 14 genes encoding putative Resistance-Nodulation-Cell Division (RND) efflux pumps in the genome of B. cenocepacia J2315, but the contribution of these pumps to the intrinsic drug resistance of this bacterium remains unclear. RESULTS: To investigate the contribution of efflux pumps to intrinsic drug resistance of B. cenocepacia J2315, we deleted 3 operons encoding the putative RND transporters RND-1, RND-3, and RND-4 containing the genes BCAS0591-BCAS0593, BCAL1674-BCAL1676, and BCAL2822-BCAL2820. Each deletion included the genes encoding the RND transporter itself and those encoding predicted periplasmic proteins and outer membrane pores. In addition, the deletion of rnd-3 also included BCAL1672, encoding a putative TetR regulator. The B. cenocepacia rnd-3 and rnd-4 mutants demonstrated increased sensitivity to inhibitory compounds, suggesting an involvement of these proteins in drug resistance. Moreover, the rnd-3 and rnd-4 mutants demonstrated reduced accumulation of N-acyl homoserine lactones in the growth medium. In contrast, deletion of the rnd-1 operon had no detectable phenotypes under the conditions assayed. CONCLUSION: Two of the three inactivated RND efflux pumps in B. cenocepacia J2315 contribute to the high level of intrinsic resistance of this strain to some antibiotics and other inhibitory compounds. Furthermore, these efflux systems also mediate accumulation in the growth medium of quorum sensing molecules that have been shown to contribute to infection. A systematic study of RND efflux systems in B. cenocepacia is required to provide a full picture of intrinsic antibiotic resistance in this opportunistic bacterium.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Burkholderia cepacia/genética , Farmacorresistência Bacteriana Múltipla/genética , Proteínas de Membrana Transportadoras/metabolismo , Acil-Butirolactonas/análise , Proteínas da Membrana Bacteriana Externa/genética , Burkholderia cepacia/efeitos dos fármacos , Burkholderia cepacia/metabolismo , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Proteínas de Membrana Transportadoras/genética , Testes de Sensibilidade Microbiana , Mutagênese , Ofloxacino/metabolismo , Óperon , Percepção de Quorum
17.
NPJ Biofilms Microbiomes ; 5(1): 29, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31602310

RESUMO

Resolution of bacterial infections is often hampered by both resistance to conventional antibiotic therapy and hiding of bacterial cells inside biofilms, warranting the development of innovative therapeutic strategies. Here, we report the efficacy of blue laser light in eradicating Pseudomonas aeruginosa cells, grown in planktonic state, agar plates and mature biofilms, both in vitro and in vivo, with minimal toxicity to mammalian cells and tissues. Results obtained using knock-out mutants point to oxidative stress as a relevant mechanism by which blue laser light exerts its anti-microbial effect. Finally, the therapeutic potential is confirmed in a mouse model of skin wound infection. Collectively, these data set blue laser phototherapy as an innovative approach to inhibit bacterial growth and biofilm formation, and thus as a realistic treatment option for superinfected wounds.


Assuntos
Biofilmes/crescimento & desenvolvimento , Biofilmes/efeitos da radiação , Lasers , Luz , Estresse Oxidativo , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/efeitos da radiação , Animais , Linhagem Celular , Meios de Cultura , Modelos Animais de Doenças , Humanos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Infecções por Pseudomonas/terapia , Radioterapia/métodos , Resultado do Tratamento , Infecção dos Ferimentos/terapia
18.
FEMS Microbiol Lett ; 288(1): 102-11, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18783435

RESUMO

In Gram-negative bacteria, a typical quorum-sensing (QS) system involves the production and response to N-acyl homoserine lactones (AHLs). It still remains unclear as to how pivotal and conserved AHL QS is in root-colonizing rhizosphere Pseudomonas. We, therefore, performed a systematic study of AHL QS on a set of 50 rice rhizosphere Pseudomonas isolates. We also isolated the AHL QS genes in two representative strains and analyzed the role of AHL QS regulation of various phenotypes. Our results are discussed with the current knowledge of AHL QS of rhizosphere Pseudomonas, implicating a lack of conservation and an unpredictable role played by AHL QS in this group of bacteria.


Assuntos
Acil-Butirolactonas/metabolismo , Oryza/microbiologia , Raízes de Plantas/microbiologia , Pseudomonas/fisiologia , Percepção de Quorum , Fluorescência , Pseudomonas/genética , Pseudomonas/isolamento & purificação
19.
J Microbiol ; 46(1): 56-61, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18337694

RESUMO

The sigmas subunit of RNA polymerase is a central regulator which governs the expression of a host of stationary phase-induced and osmotically regulated genes in Gram-negative bacteria. The Pseudomonas putida rpoS gene is transcribed as a monocistronic rpoS mRNA with a 368 nucleotide-long 5' untranslated region (5' UTR). In this study, we investigate the posttranscriptional control of RpoS synthesis using rpoS-lacZ transcriptional and translational fusions consisting of the native promoter and deletions of 5' UTR or insertion into UTR. The differing activity of constructed translational fusions strongly indicated that the 5' UTR is involved in the translational regulation of RpoS expression in the stationary phase. The results obtained herein demonstrated that the structure of UTR performs an important function in the translational regulation of the rpoS gene.


Assuntos
Regiões 5' não Traduzidas/química , Proteínas de Bactérias/metabolismo , Biossíntese de Proteínas , Pseudomonas putida/crescimento & desenvolvimento , RNA Bacteriano/química , Fator sigma/metabolismo , Regiões 5' não Traduzidas/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Conformação de Ácido Nucleico , Pseudomonas putida/genética , RNA Bacteriano/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Deleção de Sequência , Fator sigma/química , Fator sigma/genética
20.
BMC Microbiol ; 7: 71, 2007 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-17655747

RESUMO

BACKGROUND: In Pseudomonas putida and Pseduomonas aeruginosa, the similar PpuR/RsaL/PpuI and LasR/RsaL/LasI acyl homoserine lactones (AHLs) quorum sensing (QS) systems have been shown to be under considerable regulation by other global regulators. A major regulator is the RsaL protein which strongly directly represses the transcription of the P. putida ppuI and P. aeruginosa lasI AHL synthases. In this study we screened a transposon mutant bank of P. putida in order to identify if any other regulators were involved in negative regulation of AHL QS. RESULTS: In our screen we identified three Tn5 mutants which displayed overproduction of AHLs in P. putida strain WCS358. Two of the mutants had a Tn5 located in the rsaL gene, whereas in one mutant the transposon was located in the lon protease gene. Lon proteases play important roles in protein quality control via degradation of misfolded proteins. It was determined that in the P. putida lon mutant, AHL levels, PpuR levels and ppuI promoter activity all increased significantly; we therefore postulated that PpuR is a target for Lon. The Lon protease had no effect on AHL production in P. aeruginosa. CONCLUSION: The Lon protease is a negative regulator of AHL production in P. putida WCS358. The Lon protease has also been shown by others to influence AHL QS in Vibrio fischeri and Agrobacterium tumefaciens and can thus become an important regulator of AHL QS timing and regulation in bacteria.


Assuntos
4-Butirolactona/análogos & derivados , Protease La/metabolismo , Pseudomonas putida/metabolismo , Percepção de Quorum , 4-Butirolactona/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Western Blotting , Cromatografia em Camada Fina , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Desoxirribonuclease EcoRI/metabolismo , Dados de Sequência Molecular , Mutação , Regiões Promotoras Genéticas/genética , Protease La/genética , Pseudomonas putida/genética , Mapeamento por Restrição , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA