Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neuroinflammation ; 20(1): 29, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755323

RESUMO

Triggering receptor expressed on myeloid cells 2 (TREM2) is a cell-surface immunoreceptor expressed on microglia, osteoclasts, dendritic cells and macrophages. Heterozygous loss-of-function mutations in TREM2, including mutations enhancing shedding form the cell surface, have been associated with myelin/neuronal loss and neuroinflammation in neurodegenerative diseases, such as Alzheimer`s disease and Frontotemporal Dementia. Using the cuprizone model, we investigated the involvement of soluble and cleavage-reduced TREM2 on central myelination processes in cleavage-reduced (TREM2-IPD), soluble-only (TREM2-sol), knockout (TREM2-KO) and wild-type (WT) mice. The TREM2-sol mouse is a new model with selective elimination of plasma membrane TREM2 and a reduced expression of soluble TREM2. In the acute cuprizone model demyelination and remyelination events were reflected by a T2-weighted signal intensity change in magnetic resonance imaging (MRI), most prominently in the external capsule (EC). In contrast to WT and TREM2-IPD, TREM2-sol and TREM2-KO showed an additional increase in MRI signal during the recovery phase. Histological analyses of TREM2-IPD animals revealed no recovery of neuroinflammation as well as of the lysosomal marker LAMP-1 and displayed enhanced cytokine/chemokine levels in the brain. TREM2-sol and, to a much lesser extent, TREM2-KO, however, despite presenting reduced levels of some cytokines/chemokines, showed persistent microgliosis and astrocytosis during recovery, with both homeostatic (TMEM119) as well as activated (LAMP-1) microglia markers increased. This was accompanied, specifically in the EC, by no myelin recovery, with appearance of myelin debris and axonal pathology, while oligodendrocytes recovered. In the chronic model consisting of 12-week cuprizone administration followed by 3-week recovery TREM2-IPD displayed sustained microgliosis and enhanced remyelination in the recovery phase. Taken together, our data suggest that sustained microglia activation led to increased remyelination, whereas microglia without plasma membrane TREM2 and only soluble TREM2 had reduced phagocytic activity despite efficient lysosomal function, as observed in bone marrow-derived macrophages, leading to a dysfunctional phenotype with improper myelin debris removal, lack of remyelination and axonal pathology following cuprizone intoxication.


Assuntos
Doenças Desmielinizantes , Glicoproteínas de Membrana , Receptores Imunológicos , Animais , Camundongos , Cuprizona/toxicidade , Citocinas/metabolismo , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Modelos Genéticos , Bainha de Mielina/metabolismo , Doenças Neuroinflamatórias , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
2.
Cell Rep ; 39(9): 110883, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35649351

RESUMO

TREM2 is a transmembrane protein expressed exclusively in microglia in the brain that regulates inflammatory responses to pathological conditions. Proteolytic cleavage of membrane TREM2 affects microglial function and is associated with Alzheimer's disease, but the consequence of reduced TREM2 proteolytic cleavage has not been determined. Here, we generate a transgenic mouse model of reduced Trem2 shedding (Trem2-Ile-Pro-Asp [IPD]) through amino-acid substitution of an ADAM-protease recognition site. We show that Trem2-IPD mice display increased Trem2 cell-surface-receptor load, survival, and function in myeloid cells. Using single-cell transcriptomic profiling of mouse cortex, we show that sustained Trem2 stabilization induces a shift of fate in microglial maturation and accelerates microglial responses to Aß pathology in a mouse model of Alzheimer's disease. Our data indicate that reduction of Trem2 proteolytic cleavage aggravates neuroinflammation during the course of Alzheimer's disease pathology, suggesting that TREM2 shedding is a critical regulator of microglial activity in pathological states.


Assuntos
Doença de Alzheimer , Glicoproteínas de Membrana , Microglia , Receptores Imunológicos , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
3.
PLoS One ; 8(9): e75108, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086450

RESUMO

Huntington's disease (HD) is an autosomal dominant, progressive and fatal neurological disorder caused by an expansion of CAG repeats in exon-1 of the huntingtin gene. The encoded poly-glutamine stretch renders mutant huntingtin prone to aggregation. HdhQ150 mice genocopy a pathogenic repeat (∼150 CAGs) in the endogenous mouse huntingtin gene and model predominantly pre-manifest HD. Treating early is likely important to prevent or delay HD, and HdhQ150 mice may be useful to assess therapeutic strategies targeting pre-manifest HD. This requires appropriate markers and here we demonstrate, that pre-symptomatic HdhQ150 mice show several dramatic mutant huntingtin gene-dose dependent pathological changes including: (i) an increase of neuronal intra-nuclear inclusions (NIIs) in brain, (ii) an increase of extra-nuclear aggregates in dentate gyrus, (iii) a decrease of DARPP32 protein and (iv) an increase in glial markers of neuroinflammation, which curiously did not correlate with local neuronal mutant huntingtin inclusion-burden. HdhQ150 mice developed NIIs also in all retinal neuron cell-types, demonstrating that retinal NIIs are not specific to human exon-1 R6 HD mouse models. Taken together, the striking and robust mutant huntingtin gene-dose related changes in aggregate-load, DARPP32 levels and glial activation markers should greatly facilitate future testing of therapeutic strategies in the HdhQ150 HD mouse model.


Assuntos
Modelos Animais de Doenças , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Dosagem de Genes/genética , Regulação da Expressão Gênica/genética , Doença de Huntington/genética , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Animais , Western Blotting , Imunofluorescência , Genótipo , Proteína Huntingtina , Doença de Huntington/patologia , Imuno-Histoquímica , Corpos de Inclusão Intranuclear/patologia , Camundongos , Camundongos Mutantes , Oligonucleotídeos/genética , Retina/patologia , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA