RESUMO
Coastal areas are under continuous and increasing pressure from different human activities. A mixture of contaminants (e.g. hydrocarbons, pesticides, persistent organic pollutants (POPs), emerging contaminants, and others), originating mainly from populated, industrialised and agricultural areas, can reach the marine environment through different means such as wastewater discharge, soil runoffs, leaching from agriculture, and volatilisation/deposition. In this context, marine sediments have increasingly been considered repositories for a variety of pollutants that can accumulate and be stored for long periods, acting as a secondary source of contaminants during subsequent dredging operation or vessel manoeuvring. Chemical and ecotoxicological analyses of sediments are routinely conducted to evaluate the potential hazard/risk to the environment, either on bulk sediment or elutriate. In general, sediment elutriates are commonly prepared according to ASTM Guide even if alternative protocols are proposed by USACE for the various condition that they have to represent. The goal of the present study was to determine if the toxicological properties of ASTMprepared elutriates are comparable to those obtained from the USACE protocol. Sediment coming from 3 harbours (Olbia, Cagliari, and Toulon), as part of the "Se.D.Ri.Port" Interreg Project, were processed to obtain elutriates according to ASTM Guide and USACE Dredging Elutriate protocol and tested with the sea urchin Paracentrotus lividus embryo development test. Moreover, the significance of different stirring times of water/sediment mixture (1 h, 3 h, and 24 h) was tested with both the ASTM and USACE protocol. In addition to the biological analysis, for each sediment sample, heavy metals concentration, granulometry, and organic matter were determined. Even if for the ports of Toulon and Cagliari, the ASTM and USACE elutriates showed comparable results with P. lividus bioassay, for the port of Olbia the two protocols showed different criticalities. Preliminary results show that for the site Olbia elutriates prepared with the USACE protocol resulted in higher toxicity than elutriates obtained with ASTM (p < 0.001). In conclusion, differences in preparation protocols appear to be significant and can lead to different results in biological testing. To overcome this problem and to obtain more reliable evaluations of risk to the environment, standardisation and regulation must be the next goals in sediment management procedure.
Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Metais Pesados/toxicidade , Paracentrotus/efeitos dos fármacos , Água do Mar/química , Poluentes Químicos da Água/toxicidade , Animais , Bioensaio , Ecotoxicologia , Humanos , Itália , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Mar Mediterrâneo , Metais Pesados/análise , Paracentrotus/embriologia , Poluentes Químicos da Água/análiseRESUMO
Sediment dredging can cause damage to the marine environment due to mobilization of sediments and contaminants. The effects of dredging and boundary environmental conditions on the concentration of Polycyclic Aromatic Hydrocarbons (PAHs) in water were evaluated during dredging of the Oil Port of Genoa-Multedo (Italy). Results showed that turbidity and PAH concentrations increased in the water during dredging. However, the scenario was complex due to the high number of interacting physical-chemical factors influencing PAH concentrations and transport. Due to these, PAH distribution is different in water, where low-molecular-weight PAHs were predominant (maximum concentration 0.105⯵gâ¯L-1), and in bottom sediments, where high-molecular-weight PAHs had the highest concentrations (from 299.3 to 1256.5â¯ngâ¯g-1). Moreover, mainly during dredging the PAH concentrations in water were significantly higher inside than outside the port as a consequence of the lower dynamics within the port basin. Turbidity was the main parameter related to PAH concentrations.
Assuntos
Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Sedimentos Geológicos , Itália , Peso Molecular , Hidrocarbonetos Policíclicos Aromáticos/química , Água do Mar , Poluentes Químicos da Água/químicaRESUMO
Harmful algal blooms have been increasing in frequency in recent years, and attention has shifted from describing to modeling and trying to predict these phenomena, since in many cases they pose a risk to human health and coastal activities. Predicting ecological phenomena is often time and resource consuming, since a large number of field collected data are required. We propose a novel approach that involves the use of modeled meteorological data as input features to predict the concentration of the toxic benthic dinoflagellate Ostreopsis cf. ovata in seawater. Ten meteorological features were used to train a Quantile Random Forests model, which was then validated using field collected concentration data over the course of a summer sampling season. The proposed model was able to accurately describe Ostreopsis abundance in the water column in response to meteorological variables. Furthermore, the predictive power of this model appears good, as indicated by the validation results, especially when the quantile for predictions is tuned to match management requirements. The Quantile Random Forests method was selected, as it allows for greater flexibility in the generated predictions, thus making this model suitable as a tool for coastal management. The application of this approach is novel, as no other models or tools that are adaptable to this degree are currently available. The model presented here was developed for a single species over a limited geographical extension, but its methodological basis appears flexible enough to be applied to the prediction of HABs in general and it could also be extended to the case of other ecological phenomena that are strongly dependent on meteorological drivers, that can be independently modeled and potentially globally available.