Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Circ Res ; 116(4): 642-52, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25556206

RESUMO

RATIONALE: In human genetic studies a single nucleotide polymorphism within the salt-inducible kinase 1 (SIK1) gene was associated with hypertension. Lower SIK1 activity in vascular smooth muscle cells (VSMCs) leads to decreased sodium-potassium ATPase activity, which associates with increased vascular tone. Also, SIK1 participates in a negative feedback mechanism on the transforming growth factor-ß1 signaling and downregulation of SIK1 induces the expression of extracellular matrix remodeling genes. OBJECTIVE: To evaluate whether reduced expression/activity of SIK1 alone or in combination with elevated salt intake could modify the structure and function of the vasculature, leading to higher blood pressure. METHODS AND RESULTS: SIK1 knockout (sik1(-/-)) and wild-type (sik1(+/+)) mice were challenged to a normal- or chronic high-salt intake (1% NaCl). Under normal-salt conditions, the sik1(-/-) mice showed increased collagen deposition in the aorta but similar blood pressure compared with the sik1(+/+) mice. During high-salt intake, the sik1(+/+) mice exhibited an increase in SIK1 expression in the VSMCs layer of the aorta, whereas the sik1(-/-) mice exhibited upregulated transforming growth factor-ß1 signaling and increased expression of endothelin-1 and genes involved in VSMC contraction, higher systolic blood pressure, and signs of cardiac hypertrophy. In vitro knockdown of SIK1 induced upregulation of collagen in aortic adventitial fibroblasts and enhanced the expression of contractile markers and of endothelin-1 in VSMCs. CONCLUSIONS: Vascular SIK1 activation might represent a novel mechanism involved in the prevention of high blood pressure development triggered by high-salt intake through the modulation of the contractile phenotype of VSMCs via transforming growth factor-ß1-signaling inhibition.


Assuntos
Aorta/enzimologia , Pressão Arterial , Hipertensão/enzimologia , Proteínas Serina-Treonina Quinases/deficiência , Remodelação Vascular , Túnica Adventícia/enzimologia , Túnica Adventícia/patologia , Animais , Aorta/patologia , Aorta/fisiopatologia , Células Cultivadas , Colágeno/metabolismo , Endotelina-1/metabolismo , Fibroblastos/enzimologia , Fibroblastos/patologia , Genótipo , Humanos , Hipertensão/etiologia , Hipertensão/genética , Hipertensão/patologia , Hipertensão/fisiopatologia , Camundongos Knockout , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/patologia , Natriurese , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Transdução de Sinais , Cloreto de Sódio na Dieta , Sistema Nervoso Simpático/fisiopatologia , Transfecção , Fator de Crescimento Transformador beta1/metabolismo , Vasoconstrição
2.
Proc Natl Acad Sci U S A ; 110(14): 5600-5, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23503843

RESUMO

To uncover the potential cardiovascular effects of human polymorphisms influencing transforming growth factor ß1 (TGFß1) expression, we generated mice with Tgfb1 mRNA expression graded in five steps from 10% to 300% normal. Adrenal expression of the genes for mineralocorticoid-producing enzymes ranged from 50% normal in the hypermorphs at age 12 wk to 400% normal in the hypomorphs accompanied with proportionate changes in plasma aldosterone levels, whereas plasma volumes ranged from 50% to 150% normal accompanied by marked compensatory changes in plasma angiotensin II and renin levels. The aldosterone/renin ratio ranged from 0.3 times normal in the 300% hypermorphs to six times in the 10% hypomorphs, which have elevated blood pressure. Urinary output of water and electrolytes are markedly decreased in the 10% hypomorphs without significant change in the glomerular filtration rate. Renal activities for the Na(+), K(+)-ATPase, and epithelial sodium channel are markedly increased in the 10% hypomorphs. The hypertension in the 10% hypomorphs is corrected by spironolactone or amiloride at doses that do not change blood pressure in wild-type mice. Thus, changes in Tgfb1 expression cause marked progressive changes in multiple systems that regulate blood pressure and fluid homeostasis, with the major effects being mediated by changes in adrenocortical function.


Assuntos
Aldosterona/sangue , Regulação da Expressão Gênica/fisiologia , Hiperaldosteronismo/etiologia , Natriurese/fisiologia , Fator de Crescimento Transformador beta1/metabolismo , Amilorida/farmacologia , Angiotensina II/sangue , Animais , Pressão Sanguínea/efeitos dos fármacos , Primers do DNA/genética , Regulação da Expressão Gênica/genética , Taxa de Filtração Glomerular/fisiologia , Hiperaldosteronismo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Renina/sangue , ATPase Trocadora de Sódio-Potássio/metabolismo , Espironolactona/farmacologia , Fator de Crescimento Transformador beta1/genética , Urinálise
3.
FASEB J ; 26(8): 3230-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22522110

RESUMO

The protein kinase liver kinase B1 (LKB1) regulates cell polarity and intercellular junction stability. Also, LKB1 controls the activity of salt-inducible kinase 1 (SIK1). The role and relevance of SIK1 and its downstream effectors in linking the LKB1 signals within these processes are partially understood. We hypothesize that SIK1 may link LKB1 signals to the maintenance of epithelial junction stability by regulating E-cadherin expression. Results from our studies using a mouse lung alveolar epithelial (MLE-12) cell line or human renal proximal tubule (HK2) cell line transiently or stably lacking the expression of SIK1 (using SIK1 siRNAs or shRNAs), or with its expression abrogated (sik1(+/+) vs. sik1(-/-) mice), indicate that suppression of SIK1 (∼40%) increases the expression of the transcriptional repressors Snail2 (∼12-fold), Zeb1 (∼100%), Zeb2 (∼50%), and TWIST (∼20-fold) by activating cAMP-response element binding protein. The lack of SIK1 and activation of transcriptional repressors decreases the availability of E-cadherin (mRNA and protein expression by ∼100 and 80%, respectively) and the stability of intercellular junctions in epithelia (decreases in transepithelial resistance). Furthermore, LKB1-mediated increases in E-cadherin expression are impaired in cells where SIK1 has been disabled. We conclude that SIK1 is a key regulator of E-cadherin expression, and thereby contributes to the stability of intercellular junctions.


Assuntos
Caderinas/biossíntese , Junções Intercelulares/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Quinases Proteína-Quinases Ativadas por AMP , Animais , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Humanos , Junções Intercelulares/metabolismo , Túbulos Renais Proximais/metabolismo , Camundongos , Fatores de Transcrição da Família Snail , Fatores de Transcrição/biossíntese
4.
Am J Physiol Heart Circ Physiol ; 303(1): H57-65, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22467310

RESUMO

Cardiac hypertrophy (CH) generally occurs as the result of the sustained mechanical stress caused by elevated systemic arterial blood pressure (BP). However, in animal models, elevated salt intake is associated with CH even in the absence of significant increases in BP. We hypothesize that CH is not exclusively the consequence of mechanical stress but also of other factors associated with elevated BP such as abnormal cell sodium homeostasis. We examined the effect of small increases in intracellular sodium concentration ([Na(+)](i)) on transcription factors and genes associated with CH in a cardiac cell line. Increases in [Na(+)](i) led to a time-dependent increase in the expression levels of mRNA for natriuretic peptide and myosin heavy chain genes and also increased myocyte enhancer factor (MEF)2/nuclear factor of activated T cell (NFAT) transcriptional activity. Increases in [Na(+)](i) are associated with activation of salt-inducible kinase 1 (snflk-1, SIK1), a kinase known to be critical for cardiac development. Moreover, increases in [Na(+)](i) resulted in increased SIK1 expression. Sodium did not increase MEF2/NFAT activity or gene expression in cells expressing a SIK1 that lacked kinase activity. The mechanism by which SIK1 activated MEF2 involved phosphorylation of HDAC5. Increases in [Na(+)](i) activate SIK1 and MEF2 via a parallel increase in intracellular calcium through the reverse mode of Na(+)/Ca(2+)-exchanger and activation of CaMK1. These data obtained in a cardiac cell line suggest that increases in intracellular sodium could influence myocardial growth by controlling transcriptional activation and gene expression throughout the activation of the SIK1 network.


Assuntos
Expressão Gênica/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Sódio/farmacologia , Transcrição Gênica/efeitos dos fármacos , Biópsia , Cardiomegalia/genética , Cardiomegalia/metabolismo , Linhagem Celular , Átrios do Coração/citologia , Histona Desacetilases/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Proteínas de Domínio MADS/metabolismo , Fatores de Transcrição MEF2 , Monensin/farmacologia , Miócitos Cardíacos/metabolismo , Fatores de Regulação Miogênica/metabolismo , Fatores de Transcrição NFATC/metabolismo , Fosforilação , Plasmídeos , RNA/biossíntese , RNA/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Transfecção
5.
Biochim Biophys Acta ; 1802(12): 1140-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20347966

RESUMO

Sodium is the main determinant of body fluid distribution. Sodium accumulation causes water retention and, often, high blood pressure. At the cellular level, the concentration and active transport of sodium is handled by the enzyme Na(+),K(+)-ATPase, whose appearance enabled evolving primitive cells to cope with osmotic stress and contributed to the complexity of mammalian organisms. Na(+),K(+)-ATPase is a platform at the hub of many cellular signaling pathways related to sensing intracellular sodium and dealing with its detrimental excess. One of these pathways relies on an intracellular sodium-sensor network with the salt-inducible kinase 1 (SIK1) at its core. When intracellular sodium levels rise, and after the activation of calcium-related signals, this network activates the Na(+),K(+)-ATPase and expel the excess of sodium from the cytosol. The SIK1 network also mediates sodium-independent signals that modulate the activity of the Na(+),K(+)-ATPase, like dopamine and angiotensin, which are relevant per se in the development of high blood pressure. Animal models of high blood pressure, with identified mutations in components of multiple pathways, also have alterations in the SIK1 network. The introduction of some of these mutants into normal cells causes changes in SIK1 activity as well. Some cellular processes related to the metabolic syndrome, such as insulin effects on the kidney and other tissues, also appear to involve the SIK1. Therefore, it is likely that this protein, by modulating active sodium transport and numerous hormonal responses, represents a "crossroad" in the development and adaptation to high blood pressure and associated diseases.


Assuntos
Pressão Sanguínea , Sinalização do Cálcio , Citosol/enzimologia , Rim/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Sódio/metabolismo , Animais , Humanos , Insulina/genética , Insulina/metabolismo , Síndrome Metabólica/enzimologia , Síndrome Metabólica/genética , Camundongos , Mutação , Proteínas Serina-Treonina Quinases/genética , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
6.
Biochem Biophys Res Commun ; 409(1): 28-33, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21549091

RESUMO

Salt-inducible kinase 1 (SIK1) in epithelial cells mediates the increases in active sodium transport (Na(+), K(+)-ATPase-mediated) in response to elevations in the intracellular concentration of sodium. In lung alveolar epithelial cells increases in active sodium transport in response to ß-adrenergic stimulation increases pulmonary edema clearance. Therefore, we sought to determine whether SIK1 is present in lung epithelial cells and to examine whether isoproterenol-dependent stimulation of Na(+), K(+)-ATPase is mediated via SIK1 activity. All three SIK isoforms were present in airway epithelial cells, and in alveolar epithelial cells type 1 and type 2 from rat and mouse lungs, as well as from human and mouse cell lines representative of lung alveolar epithelium. In mouse lung epithelial cells, SIK1 associated with the Na(+), K(+)-ATPase α-subunit, and isoproterenol increased SIK1 activity. Isoproterenol increased Na(+), K(+)-ATPase activity and the incorporation of Na(+), K(+)-ATPase molecules at the plasma membrane. Furthermore, those effects were abolished in cells depleted of SIK1 using shRNA, or in cells overexpressing a SIK1 kinase-deficient mutant. These results provide evidence that SIK1 is present in lung epithelial cells and that its function is relevant for the action of isoproterenol during regulation of active sodium transport. As such, SIK1 may constitute an important target for drug discovery aimed at improving the clearance of pulmonary edema.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Alvéolos Pulmonares/enzimologia , Mucosa Respiratória/enzimologia , Sódio/metabolismo , Animais , Broncodilatadores/farmacologia , Linhagem Celular , Humanos , Transporte de Íons/efeitos dos fármacos , Isoproterenol/farmacologia , Camundongos , Proteínas Serina-Treonina Quinases/genética , Alvéolos Pulmonares/efeitos dos fármacos , Ratos , Mucosa Respiratória/efeitos dos fármacos
7.
J Clin Invest ; 111(7): 1057-64, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12671055

RESUMO

During ascent to high altitude and pulmonary edema, the alveolar epithelial cells (AEC) are exposed to hypoxic conditions. Hypoxia inhibits alveolar fluid reabsorption and decreases Na,K-ATPase activity in AEC. We report here that exposure of AEC to hypoxia induced a time-dependent decrease of Na,K-ATPase activity and a parallel decrease in the number of Na,K-ATPase alpha(1) subunits at the basolateral membrane (BLM), without changing its total cell protein abundance. These effects were reversible upon reoxygenation and specific, because the plasma membrane protein GLUT1 did not decrease in response to hypoxia. Hypoxia caused an increase in mitochondrial reactive oxygen species (ROS) levels that was inhibited by antioxidants. Antioxidants prevented the hypoxia-mediated decrease in Na,K-ATPase activity and protein abundance at the BLM. Hypoxia-treated AEC deficient in mitochondrial DNA (rho(0) cells) did not have increased levels of ROS, nor was the Na,K-ATPase activity inhibited. Na,K-ATPase alpha(1) subunit was phosphorylated by PKC in hypoxia-treated AEC. In AEC treated with a PKC-zeta antagonist peptide or with the Na,K-ATPase alpha(1) subunit lacking the PKC phosphorylation site (Ser-18), hypoxia failed to decrease Na,K-ATPase abundance and function. Accordingly, we provide evidence that hypoxia decreases Na,K-ATPase activity in AEC by triggering its endocytosis through mitochondrial ROS and PKC-zeta-mediated phosphorylation of the Na,K-ATPase alpha(1) subunit.


Assuntos
Endocitose , Células Epiteliais/metabolismo , Hipóxia , Mitocôndrias/metabolismo , Proteína Quinase C/fisiologia , Espécies Reativas de Oxigênio , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/metabolismo , Trifosfato de Adenosina/metabolismo , Southern Blotting , Western Blotting , Catalase/metabolismo , Catálise , Membrana Celular/metabolismo , Sobrevivência Celular , Humanos , Peróxido de Hidrogênio/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia , Microscopia de Fluorescência , Mutação , Fosforilação , Testes de Precipitina , Proteína Quinase C/metabolismo , Transdução de Sinais , Fatores de Tempo , Fatores de Transcrição/metabolismo , Células Tumorais Cultivadas
8.
Mol Biol Cell ; 14(3): 1149-57, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12631730

RESUMO

Dopamine (DA) increases Na(+),K(+)-ATPase activity in lung alveolar epithelial cells. This effect is associated with an increase in Na(+),K(+)-ATPase molecules within the plasma membrane (). Analysis of Na(+),K(+)-ATPase motion was performed in real-time in alveolar cells stably expressing Na(+),K(+)-ATPase molecules carrying a fluorescent tag (green fluorescent protein) in the alpha-subunit. The data demonstrate a distinct (random walk) pattern of basal movement of Na(+),K(+)-ATPase-containing vesicles in nontreated cells. DA increased the directional movement (by 3.5 fold) of the vesicles and an increase in their velocity (by 25%) that consequently promoted the incorporation of vesicles into the plasma membrane. The movement of Na(+),K(+)-ATPase-containing vesicles and incorporation into the plasma membrane were microtubule dependent, and disruption of this network perturbed vesicle motion toward the plasma membrane and prevented the increase in the Na(+),K(+)-ATPase activity induced by DA. Thus, recruitment of new Na(+),K(+)-ATPase molecules into the plasma membrane appears to be a major mechanism by which dopamine increases total cell Na(+),K(+)-ATPase activity.


Assuntos
Membrana Celular/metabolismo , Dopamina/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Receptores de Superfície Celular/metabolismo , Mucosa Respiratória/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo , Actinas/metabolismo , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular , Polaridade Celular , Vesículas Citoplasmáticas/metabolismo , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microtúbulos/metabolismo , Paclitaxel/farmacologia , Transporte Proteico/fisiologia , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/metabolismo , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Transdução de Sinais/fisiologia , ATPase Trocadora de Sódio-Potássio/genética , Tiazóis/farmacologia , Tiazolidinas
9.
Mol Biol Cell ; 13(4): 1381-9, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11950946

RESUMO

The purpose of this study was to define mechanisms by which dopamine (DA) regulates the Na,K-ATPase in alveolar epithelial type 2 (AT2) cells. The Na,K-ATPase activity increased by twofold in cells incubated with either 1 microM DA or a dopaminergic D(1) agonist, fenoldopam, but not with the dopaminergic D(2) agonist quinpirole. The increase in activity paralleled an increase in Na,K-ATPase alpha1 and beta1 protein abundance in the basolateral membrane (BLM) of AT2 cells. This increase in protein abundance was mediated by the exocytosis of Na,K-pumps from late endosomal compartments into the BLM. Down-regulation of diacylglycerol-sensitive types of protein kinase C (PKC) by pretreatment with phorbol 12-myristate 13-acetate or inhibition with bisindolylmaleimide prevented the DA-mediated increase in Na,K-ATPase activity and exocytosis of Na,K-pumps to the BLM. Preincubation of AT2 cells with either 2-[1-(3-dimethylaminopropyl)-5-methoxyindol-3-yl]-3-(1H-indol-3-yl)maleimide (Gö6983), a selective inhibitor of PKC-delta, or isozyme-specific inhibitor peptides for PKC-delta or PKC-epsilon inhibited the DA-mediated increase in Na,K-ATPase. PKC-delta and PKC-epsilon, but not PKC-alpha or -beta, translocated from the cytosol to the membrane fraction after exposure to DA. PKC-delta- and PKC-epsilon-specific peptide agonists increased Na,K-ATPase protein abundance in the BLM. Accordingly, dopamine increased Na,K-ATPase activity in alveolar epithelial cells through the exocytosis of Na,K-pumps from late endosomes into the basolateral membrane in a mechanism-dependent activation of the novel protein kinase C isozymes PKC-delta and PKC-epsilon.


Assuntos
Dopamina/farmacologia , Isoenzimas/metabolismo , Proteína Quinase C/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Western Blotting , Membrana Celular/metabolismo , Células Cultivadas , Dopamina/metabolismo , Regulação para Baixo , Endossomos/metabolismo , Inibidores Enzimáticos/farmacologia , Exocitose , Fenoldopam/metabolismo , Indóis/farmacologia , Isoenzimas/fisiologia , Masculino , Maleimidas/farmacologia , Ligação Proteica , Proteína Quinase C/fisiologia , Proteína Quinase C beta , Proteína Quinase C-alfa , Proteína Quinase C-delta , Proteína Quinase C-épsilon , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Regulação para Cima
10.
FEBS Lett ; 580(21): 5067-70, 2006 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-16949583

RESUMO

Dopamine is a major regulator of sodium reabsorption in proximal tubule epithelia. It induces the endocytosis of plasma membrane Na,K-ATPase molecules, and this results in a reduced capacity of the cells to transport sodium. Dopamine induces the phosphorylation of Ser-18 in the alpha1-subunit of Na,K-ATPase. Fluorescence resonance energy transfer analysis of cells expressing YFP-alpha1 and beta1-CFP reveals that treatment of the cells with dopamine increases energy transfer between CFP and YFP. This is consistent with a protein conformational change that results in the N-terminal end of alpha1 moving closer to the internal face of the plasma membrane.


Assuntos
Endocitose , Transferência Ressonante de Energia de Fluorescência , Subunidades Proteicas/química , Receptores Acoplados a Proteínas G/metabolismo , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/metabolismo , Alcaloides , Androstadienos/farmacologia , Animais , Benzofenantridinas , Células Cultivadas , Dopamina/farmacologia , Endocitose/efeitos dos fármacos , Gambás , Fenantridinas/farmacologia , Conformação Proteica/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Ratos , Wortmanina
11.
Semin Nephrol ; 26(5): 386-92, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17071332

RESUMO

Na(+), K(+)-adenosine triphosphatase is a ubiquitous enzyme present in higher eukaryotes responsible for the maintenance of ionic gradients across the plasma membrane. It creates appropriate conditions for critical cellular processes such as secondary transport of solutes and water, for pH regulation, and also for creating an electrical potential that gives singular qualities to excitable cells. It also served as a platform for a higher level of cellular complexity because many important signaling networks appear to be downstream events of the pump's function. Renal physiology and pathology are affected significantly by its presence, and it seems that both molecular and pharmacologic manipulations of its action can create different venues to deal with diverse disease states.


Assuntos
Membrana Celular/enzimologia , Transdução de Sinais/fisiologia , ATPase Trocadora de Sódio-Potássio/fisiologia , Animais , Evolução Biológica , Humanos
12.
Circ Res ; 95(11): 1100-8, 2004 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-15528469

RESUMO

Alpha-adducin polymorphism in humans is associated with abnormal renal sodium handling and high blood pressure. The mechanisms by which mutations in adducin affect the renal set point for sodium excretion are not known. Decreases in Na+,K+-ATPase activity attributable to endocytosis of active units in renal tubule cells by dopamine regulates sodium excretion during high-salt diet. Milan rats carrying the hypertensive adducin phenotype have a higher renal tubule Na+,K+-ATPase activity, and their Na+,K+-ATPase molecules do not undergo endocytosis in response to dopamine as do those of the normotensive strain. Dopamine fails to promote the interaction between adaptins and the Na+,K+-ATPase because of adaptin-mu2 subunit hyperphosphorylation. Expression of the hypertensive rat or human variant of adducin into normal renal epithelial cells recreates the hypertensive phenotype with higher Na+,K+-ATPase activity, mu2-subunit hyperphosphorylation, and impaired Na+,K+-ATPase endocytosis. Thus, increased renal Na+,K+-ATPase activity and altered sodium reabsorption in certain forms of hypertension could be attributed to a mutant form of adducin that impairs the dynamic regulation of renal Na+,K+-ATPase endocytosis in response to natriuretic signals.


Assuntos
Complexo 2 de Proteínas Adaptadoras/metabolismo , Subunidades mu do Complexo de Proteínas Adaptadoras/metabolismo , Proteínas do Citoesqueleto/fisiologia , Hipertensão/genética , Túbulos Renais/enzimologia , Proteínas dos Microfilamentos/fisiologia , Natriurese/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Complexo 2 de Proteínas Adaptadoras/química , Subunidades mu do Complexo de Proteínas Adaptadoras/química , Substituição de Aminoácidos , Animais , Pressão Sanguínea/genética , Pressão Sanguínea/fisiologia , Linhagem Celular/efeitos dos fármacos , Linhagem Celular/enzimologia , Proteínas do Citoesqueleto/genética , Dopamina/farmacologia , Endocitose/efeitos dos fármacos , Endossomos/enzimologia , Epitélio/enzimologia , Humanos , Hipertensão/enzimologia , Hipertensão/fisiopatologia , Túbulos Renais/efeitos dos fármacos , Proteínas dos Microfilamentos/genética , Mutagênese Sítio-Dirigida , Natriurese/efeitos dos fármacos , Natriurese/genética , Gambás , Fosfoproteínas Fosfatases/metabolismo , Mapeamento de Interação de Proteínas , Subunidades Proteicas , Ratos , Ratos Mutantes , Proteínas Recombinantes de Fusão/fisiologia , Relação Estrutura-Atividade , Transfecção
13.
Semin Nephrol ; 25(5): 322-7, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16139687

RESUMO

In the current report we review the results that lay grounds for the model of intracellular sodium-mediated dopamine-induced endocytosis of Na,K-ATPase. Under conditions of a high salt diet, dopamine activates PKCzeta, which phosphorylates NKA alpha1 Ser-18. The phosphorylation produces a conformational change of alpha1 NH2-terminus, which through interaction with other domains of alpha1 exposes PI3K- and AP-2-binding domains. PI3K bound to the NKA alpha1 induces the recruitment and activation of other proteins involved in endocytosis, and PI3K-generated 3-phosphoinositides affect the local cytoskeleton and modify the biophysical conditions of the membrane for development of clathrin-coated pits. Plasma membrane phosphorylated NKA is internalized to specialized intracellular compartments where the NKA will be dephosphorylated. The NKA internalization results in a reduced Na+ transport by proximal tubule epithelial cells.


Assuntos
Cardiotônicos/farmacologia , Dopamina/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Túbulos Renais Proximais/citologia , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/efeitos dos fármacos , Animais , Pressão Sanguínea/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Humanos , Complexos Multiproteicos/efeitos dos fármacos , Complexos Multiproteicos/metabolismo , Fosforilação/efeitos dos fármacos , Proteína Quinase C/efeitos dos fármacos , Proteína Quinase C/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Proteínas de Transporte Vesicular/efeitos dos fármacos , Proteínas de Transporte Vesicular/metabolismo
14.
Br J Pharmacol ; 137(8): 1380-6, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12466249

RESUMO

1. The present study demonstrates that stimulation of hormonal receptors of proximal tubule cells with the serotonin-agonist 8-hydroxy-2-(di-n-propylamino) tetraline (8-OH-DPAT) induces an augmentation of Na(+),K(+)-ATPase activity that results from the recruitment of enzyme molecules to the plasmalemma. 2. Cells expressing the rodent wild-type Na(+),K(+)-ATPase alpha-subunit had the same basal Na(+),K(+)-ATPase activity as cells expressing the alpha-subunit S11A or S18A mutants, but stimulation of Na(+),K(+)-ATPase activity was completely abolished in either mutant. 3. 8-OH-DPAT treatment of OK cells led to PKC(beta)-dependent phosphorylation of the alpha-subunit Ser-11 and Ser-18 residues, and determination of enzyme activity with the S11A and S18A mutants indicated that both residues are essential for the agonist-dependent stimulation of Na(+),K(+)-ATPase activity. 4. When cells were treated with both dopamine and 8-OH-DPAT, an activation of Na(+),K(+)-ATPase was observed at basal intracellular sodium concentration (approximately 9 mM), and this activation was gradually reduced and became a significant inhibition as the concentration of intracellular sodium gradually increased from 9 to 19 mM. Thus, besides the antagonistic effects of dopamine and 8-OH-DPAT, intracellular sodium modulates whether an activation or an inhibition of Na(+),K(+)-ATPase is produced.


Assuntos
Líquido Intracelular/metabolismo , Proteína Quinase C/metabolismo , Receptores de Superfície Celular/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Sódio/fisiologia , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Líquido Intracelular/enzimologia , Rim/citologia , Rim/efeitos dos fármacos , Rim/enzimologia , Gambás , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C beta , Receptores de Serotonina/metabolismo , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores
15.
Ann N Y Acad Sci ; 986: 587-94, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12763893

RESUMO

The Na(+),K(+)-ATPase traffics between the plasma membrane and intracellular compartments in response to acute changes in membrane receptor activation. These effects are accomplished by a time-dependent interaction of the Na(+),K(+)-ATPase alpha-subunit with specific intracellular signaling molecules either at the plasma membrane (endocytosis) or at the endosome's membranes (recruitment). Most of these studies have been performed in rat renal epithelial cells in which only the alpha(1) isoenzyme is present. Studies in neurons from the neostriatum in which all three alpha-subunit isoforms are present indicate that neurotransmitter-dependent regulation of Na(+),K(+)-ATPase activity displays isoform specificity and also suggest a more complex organization of the intracellular signaling networks controlling Na(+),K(+)-ATPase traffic in mammalian cells.


Assuntos
Membrana Celular/enzimologia , Endocitose/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Homeostase , Hormônios/fisiologia , Isoenzimas/metabolismo , Neurônios/fisiologia , Receptores de Superfície Celular/fisiologia
16.
Medicina (B Aires) ; 62(2): 181-8, 2002.
Artigo em Espanhol | MEDLINE | ID: mdl-12038043

RESUMO

Acute respiratory distress syndrome (ARDS) is a life threatening condition associated with great morbidity and mortality. it is characterized initially by accumulation of fluid in the alveolar space that impairs alveolar oxygen exchange. Eventually, this syndrome leads to multiorgan failure. Therefore, rapid edema clearance has generally been associated with better outcome in patients with acute respiratory distress syndrome. Clearance of alveolar fluid is driven predominantly by active Na+ transport out of the alveolar space, mediated by increased apical Na(+)-channel and Na-K-ATPase activity. It has been demonstrated that increases in Na-K-ATPase in response to catecholamines in the alveolar epithelium are associated with increased lung edema clearance. The cellular mechanisms involve the recruitment of new Na-K-ATPase molecules to the plasma membrane from intracellular organelles. It also appears that adenovirus-mediated Na-K-ATPase gene transfer and increased Na-K-ATPase expression may provide an alternative and efficient pathway for transient increase in alveolar fluid reabsorption and resolution of pulmonary edema.


Assuntos
Alvéolos Pulmonares/enzimologia , Edema Pulmonar/etiologia , Síndrome do Desconforto Respiratório/complicações , ATPase Trocadora de Sódio-Potássio/metabolismo , Catecolaminas/metabolismo , Humanos , Edema Pulmonar/enzimologia , Edema Pulmonar/terapia , Síndrome do Desconforto Respiratório/terapia , ATPase Trocadora de Sódio-Potássio/fisiologia
17.
PLoS One ; 9(4): e95771, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24752134

RESUMO

Cardiac left ventricle hypertrophy (LVH) constitutes a major risk factor for heart failure. Although LVH is most commonly caused by chronic elevation in arterial blood pressure, reduction of blood pressure to normal levels does not always result in regression of LVH, suggesting that additional factors contribute to the development of this pathology. We tested whether genetic preconditions associated with the imbalance in sodium homeostasis could trigger the development of LVH without concomitant increases in blood pressure. The results showed that the presence of a hypertensive variant of α-adducin gene in Milan rats (before they become hypertensive) resulted in elevated expression of genes associated with LVH, and of salt-inducible kinase 2 (SIK2) in the left ventricle (LV). Moreover, the mRNA expression levels of SIK2, α-adducin, and several markers of cardiac hypertrophy were positively correlated in tissue biopsies obtained from human hearts. In addition, we found in cardiac myocytes that α-adducin regulates the expression of SIK2, which in turn mediates the effects of adducin on hypertrophy markers gene activation. Furthermore, evidence that SIK2 is critical for the development of LVH in response to chronic high salt diet (HS) was obtained in mice with ablation of the sik2 gene. Increases in the expression of genes associated with LVH, as well as increases in LV wall thickness upon HS, occurred only in sik2+/+ but not in sik2-/- mice. Thus LVH triggered by HS or the presence of a genetic variant of α-adducin requires SIK2 and is independent of elevated blood pressure. Inhibitors of SIK2 may constitute part of a novel therapeutic regimen aimed at prevention/regression of LVH.


Assuntos
Cardiomegalia/prevenção & controle , Hipertrofia Ventricular Esquerda/prevenção & controle , Proteínas Serina-Treonina Quinases/metabolismo , Cloreto de Sódio na Dieta/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Cardiomegalia/enzimologia , Humanos , Hipertrofia Ventricular Esquerda/enzimologia , Imuno-Histoquímica , Técnicas In Vitro , Masculino , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Ratos
18.
PLoS One ; 7(5): e37803, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22662228

RESUMO

Salt-inducible kinase 3 (SIK3), an AMP-activated protein kinase-related kinase, is induced in the murine liver after the consumption of a diet rich in fat, sucrose, and cholesterol. To examine whether SIK3 can modulate glucose and lipid metabolism in the liver, we analyzed phenotypes of SIK3-deficent mice. Sik3(-/-) mice have a malnourished the phenotype (i.e., lipodystrophy, hypolipidemia, hypoglycemia, and hyper-insulin sensitivity) accompanied by cholestasis and cholelithiasis. The hypoglycemic and hyper-insulin-sensitive phenotypes may be due to reduced energy storage, which is represented by the low expression levels of mRNA for components of the fatty acid synthesis pathways in the liver. The biliary disorders in Sik3(-/-) mice are associated with the dysregulation of gene expression programs that respond to nutritional stresses and are probably regulated by nuclear receptors. Retinoic acid plays a role in cholesterol and bile acid homeostasis, wheras ALDH1a which produces retinoic acid, is expressed at low levels in Sik3(-/-) mice. Lipid metabolism disorders in Sik3(-/-) mice are ameliorated by the treatment with 9-cis-retinoic acid. In conclusion, SIK3 is a novel energy regulator that modulates cholesterol and bile acid metabolism by coupling with retinoid metabolism, and may alter the size of energy storage in mice.


Assuntos
Glucose/metabolismo , Metabolismo dos Lipídeos , Proteínas Serina-Treonina Quinases/genética , Animais , Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Ácido Cólico/metabolismo , Dieta Hiperlipídica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Homeostase/genética , Hipoglicemia/genética , Hipoglicemia/metabolismo , Metabolismo dos Lipídeos/genética , Lipodistrofia/genética , Lipodistrofia/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
19.
J Hypertens ; 29(12): 2395-403, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22045124

RESUMO

OBJECTIVES: Essential hypertension is a complex condition whose cause involves the interaction of multiple genetic and environmental factors such as salt intake. Salt-inducible kinase 1 (SIK1) is a sucrose-nonfermenting-like kinase isoform that belongs to the AMPK (5' adenosine monophosphate-activated protein kinase) family. SIK1 activity is increased by high salt intake and plays an essential role in regulating the plasma membrane Na(+),K(+)-ATPase. The objective of this study was to examine whether SIK1 is present in vascular smooth muscle cells (VSMCs) and endothelial cells, whether it affects VSMC Na(+),K(+)-ATPase activity and whether human SIK1 (hSIK1) represents a potential candidate for blood pressure regulation. METHODS: Localization of SIK1 was performed using immunohistochemistry, mRNA and western blot. Functional assays (Na(+),K(+)-ATPase activity) were performed in VSMCs derived from rat aorta. Genotype-phenotype association studies were performed in three Swedish and one Japanese population-based cohorts. RESULTS: SIK1 was localized in human VSMCs and endothelial cells, as well as a cell line derived from rat aorta. A nonsynonymous single nucleotide polymorphism in the hSIK1 gene exon 3 (C→T, rs3746951) results in the amino acid change (15)Gly→Ser in the SIK1 protein. SIK1-(15)Ser was found to increase plasma membrane Na(+),K(+)-ATPase activity in cultured VSMC line from rat aorta. Genotype-phenotype association studies in three Swedish and one Japanese population-based cohorts suggested that T allele (coding for (15)Ser) was associated with lower blood pressure (P = 0.005 for SBP and P = 0.002 for DBP) and with a decrease in left ventricular mass (P = 0.048). CONCLUSION: The hSIK1 appears to be of potential relevance within VSMC function and blood pressure regulation.


Assuntos
Pressão Sanguínea/fisiologia , Endotélio Vascular/enzimologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Aorta Abdominal/enzimologia , Aorta Abdominal/patologia , Linhagem Celular , Endotélio Vascular/citologia , Expressão Gênica , Genótipo , Humanos , Hipertrofia Ventricular Esquerda/enzimologia , Hipertrofia Ventricular Esquerda/patologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Polimorfismo de Nucleotídeo Único , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/metabolismo , Ratos
20.
Life Sci ; 86(3-4): 73-8, 2010 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-19909757

RESUMO

Chronic hypertension is characterized by a persistent increase in vascular tone. Sodium-rich diets promote hypertension; however, the underlying molecular mechanisms are not fully understood. Variations in the sodium content of the diet, through hormonal mediators such as dopamine and angiotensin II, modulate renal tubule Na(+),K(+)-ATPase activity. Stimulation of Na(+),K(+)-ATPase activity increases sodium transport across the renal proximal tubule epithelia, promoting Na(+) retention, whereas inhibited Na(+),K(+)-ATPase activity decreases sodium transport, and thereby natriuresis. Diets rich in sodium also enhance the release of adrenal endogenous ouabain-like compounds (OLC), which inhibit Na(+),K(+)-ATPase activity, resulting in increased intracellular Na(+) and Ca(2+) concentrations in vascular smooth muscle cells, thus increasing the vascular tone, with a corresponding increase in blood pressure. The mechanisms by which these homeostatic processes are integrated in response to salt intake are complex and not completely elucidated. However, recent scientific findings provide new insights that may offer additional avenues to further explore molecular mechanisms related to normal physiology and pathophysiology of various forms of hypertension (i.e. salt-induced). Consequently, new strategies for the development of improved therapeutics and medical management of hypertension are anticipated.


Assuntos
Hipertensão/etiologia , Cloreto de Sódio na Dieta/efeitos adversos , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Animais , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/enzimologia , Hipertensão/fisiopatologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/enzimologia , Ouabaína/metabolismo , Cloreto de Sódio na Dieta/farmacocinética , Resistência Vascular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA