RESUMO
Recently, we described a series of phenyl methyl-isoxazole derivatives as novel, potent, and selective inhibitors of the voltage-gated sodium channel type 1.7 (Bioorg Med Chem Lett 21:3871-3876, 2011). The lead compound, 2-chloro-6-fluorobenzyl [3-(2,6-dichlorophenyl)-5-methylisoxazol-4-yl]carbamate, showed unprecedented GSH and cysteine reactivity associated with NADPH-dependent metabolism in trapping studies using human liver microsomes. Additional trapping experiments with close analogs and mass spectra and NMR analyses suggested that the conjugates were attached directly to the 5'-methyl on the isoxazole moiety. We propose a mechanism of bioactivation via an initial oxidation of the 5'-methyl generating a stabilized enimine intermediate and a subsequent GSH attack on the 5'-methylene. Efforts to ameliorate reactive metabolite generation were undertaken to minimize the potential risk of toxicity. Formation of reactive metabolites could be significantly reduced or prevented by removing the 5'-methyl, by N-methylation of the carbamate; by replacing the nitrogen with a carbon or removing the nitrogen to obtain a carboxylate; or by inserting an isomeric 5'-methyl isoxazole. The effectiveness of these various chemical modifications in reducing GSH adduct formation is in line with the proposed mechanism. In conclusion, we have identified a novel mechanism of bioactivation of phenyl 5-methyl-isoxazol-4-yl-amines. The reactivity was attenuated by several modifications aimed to prevent the emergence of an enimine intermediate. Whether 5'-methyl isoxazoles should be considered a structural alert for potential formation of reactive metabolites is dependent on their context, i.e., 4'-nitrogen.
Assuntos
Isoxazóis/farmacocinética , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacocinética , Carbamatos/metabolismo , Carbono/metabolismo , Cisteína/metabolismo , Glutationa/metabolismo , Humanos , Fígado/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Microssomos Hepáticos/metabolismo , NADP/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Nitrogênio/metabolismo , Oxirredução , Ureia/metabolismoRESUMO
A novel indolizine class of compounds was identified as TRPV1 antagonist from an HTS campaign. However, this indolizine class proved to be unstable and reacted readily with glutathione when exposed to light and oxygen. Reactivity was reduced by the introduction of a nitrogen atom alpha to the indolizine nitrogen. The pyrrolopyridazine core obtained proved to be inert to the action of light and oxygen. The synthesis route followed the one used for the indolizine compounds, and the potency and ADMET profile proved to be similar.
Assuntos
Piridazinas/química , Pirróis/química , Canais de Cátion TRPV/antagonistas & inibidores , Animais , Células CACO-2 , Permeabilidade da Membrana Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Indolizidinas/química , Microssomos Hepáticos/metabolismo , Piridazinas/síntese química , Piridazinas/farmacocinética , Pirróis/síntese química , Pirróis/farmacocinética , Ratos , Relação Estrutura-Atividade , Canais de Cátion TRPV/metabolismoRESUMO
Recent findings showing a relation between mutations in the Na(V)1.7 channel in humans and altered pain sensation has contributed to increase the attractiveness of this ion channel as target for development of potential analgesics. Amido chromanes 1 and 2 were identified as blockers of the Na(V)1.7 channel and analogues with modifications of the 5-substituent and the carboxamide part of the molecule were prepared to establish the structure-activity relationship. Compounds 13 and 29 with good overall in vitro and in vivo rat PK profile were identified. Furthermore, 29 showed in vivo efficacy in a nociceptive pain model.
Assuntos
Cromanos/química , Cromanos/uso terapêutico , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Dor Nociceptiva/tratamento farmacológico , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico , Analgésicos/química , Analgésicos/farmacocinética , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Cromanos/farmacocinética , Cromanos/farmacologia , Formaldeído , Humanos , Dor Nociceptiva/induzido quimicamente , Ratos , Relação Estrutura-Atividade , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacocinéticaRESUMO
The Na(V)1.7 ion channel is an attractive target for development of potential analgesic drugs based on strong genetic links between mutations in the gene coding for the channel protein and inheritable pain conditions. The (S)-N-chroman-3-ylcarboxamide series, exemplified by 1, was used as a starting point for development of new channel blockers, resulting in the phenethyl nicotinamide series. The structure and activity relationship for this series was established and the metabolic issues of early analogues were addressed by appropriate substitutions. Compound 33 displayed acceptable overall in vitro properties and in vivo rat PK profile.
Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Animais , Relação Dose-Resposta a Droga , Humanos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Niacinamida/síntese química , Niacinamida/química , Ratos , Bloqueadores dos Canais de Sódio/síntese química , Bloqueadores dos Canais de Sódio/química , Solubilidade , Estereoisomerismo , Relação Estrutura-AtividadeRESUMO
Benzothiazole amides were identified as TRPV1 antagonists from high throughput screening using recombinant human TRPV1 receptor and structure-activity relationships were explored to pinpoint key pharmacophore interactions. By increasing aqueous solubility, through the attachment of polar groups to the benzothiazole core, and enhancing metabolic stability, by blocking metabolic sites, the drug-like properties and pharmokinetic profiles of benzothiazole compounds were sufficiently optimized such that their therapeutic potential could be verified in rat pharmacological models of pain.
Assuntos
Amidas/farmacologia , Benzotiazóis/farmacologia , Dor/tratamento farmacológico , Canais de Cátion TRPV/antagonistas & inibidores , Amidas/administração & dosagem , Amidas/química , Animais , Benzotiazóis/administração & dosagem , Benzotiazóis/química , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Inflamação/tratamento farmacológico , Estrutura Molecular , Ratos , Proteínas Recombinantes/antagonistas & inibidores , Solubilidade , Relação Estrutura-AtividadeRESUMO
Blocking of certain sodium channels is considered to be an attractive mechanism to treat chronic pain conditions. Phenyl isoxazole carbamate 1 was identified as a potent and selective Na(V)1.7 blocker. Structural analogues of 1, both carbamates, ureas and amides, were proven to be useful in establishing the structure-activity relationship and improving ADME related properties. Amide 24 showed a good overall in vitro profile, that translated well to rat in vivo PK.
Assuntos
Carbamatos/química , Isoxazóis/química , Isoxazóis/farmacologia , Bloqueadores dos Canais de Sódio/química , Bloqueadores dos Canais de Sódio/farmacologia , Administração Oral , Animais , Carbamatos/administração & dosagem , Carbamatos/uso terapêutico , Humanos , Bombas de Infusão , Concentração Inibidora 50 , Isoxazóis/administração & dosagem , Isoxazóis/uso terapêutico , Estrutura Molecular , Dor/tratamento farmacológico , Ratos , Bloqueadores dos Canais de Sódio/administração & dosagem , Relação Estrutura-AtividadeRESUMO
The voltage-gated sodium channel Na(V)1.7 is believed to be a critical mediator of pain sensation based on clinical genetic studies and pharmacological results. Clinical utility of nonselective sodium channel blockers is limited due to serious adverse drug effects. Here, we present the optimization, structure-activity relationships, and in vitro and in vivo characterization of a novel series of Na(V)1.7 inhibitors based on the oxoisoindoline core. Extensive studies with focus on optimization of Na(V)1.7 potency, selectivity over Na(V)1.5, and metabolic stability properties produced several interesting oxoisoindoline carboxamides (16A, 26B, 28, 51, 60, and 62) that were further characterized. The oxoisoindoline carboxamides interacted with the local anesthetics binding site. In spite of this, several compounds showed functional selectivity versus Na(V)1.5 of more than 100-fold. This appeared to be a combination of subtype and state-dependent selectivity. Compound 28 showed concentration-dependent inhibition of nerve injury-induced ectopic in an ex vivo DRG preparation from SNL rats. Compounds 16A and 26B demonstrated concentration-dependent efficacy in preclinical behavioral pain models. The oxoisoindoline carboxamides series described here may be valuable for further investigations for pain therapeutics.