Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39380134

RESUMO

Singlet fission (SF), which involves the conversion of a singlet excited state into two triplet excitons, holds great potential to boost the efficiency of photovoltaics. However, losses due to triplet-triplet annihilation hamper the efficient harvesting of SF-generated triplet excitons, which limits an effective implementation in solar energy conversion schemes. A fundamental understanding of the underlying structure-property relationships is thus crucial to define design principles for cutting-edge SF materials, yet it remains elusive. Herein, we harness helical supramolecular polymers decorated with pentacene side groups to elucidate intermolecular SF dynamics in solution and promote the formation of long-lived mobile triplets. By leveraging the hydrogen bonding-driven assembly of benzene-1,3,5-tricarboxamide (BTA) cores into one-dimensional scaffolds, we direct the organization of appended pentacene motifs into long-range ordered helical frameworks. Dynamic interactions between weakly coupled SF pendants mediate singlet conversion within hundreds of picoseconds, affording triplet quantum yields well above 100%. Moreover, analysis of triplet dynamics with a Monte Carlo simulation model reveals that triplet diffusion along the supramolecular fibers is favored over annihilation, resulting in independent triplets exhibiting considerably slow decay on the time scale of tens of microseconds. The molecular packing within the assembly is tuned by subtle changes in monomer design to increase the rate and efficiency of SF while ensuring exceptionally long-lived mobile triplets, allowing to maintain triplet quantum yields exceeding 100% for at least 100 ns. This work opens new opportunities to exploit self-assembled supramolecular polymers as functional templates to achieve long-lived SF-generated triplets.

2.
J Org Chem ; 86(22): 16195-16203, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34455793

RESUMO

The electrochemical synthesis of aryl azoles was performed for the first time in a microflow reactor. The reaction relies on the anodic oxidation of the arene partners making these substrates susceptible for C-H functionalization with azoles, thus requiring no homogeneous transition-metal-based catalysts. The synthetic protocol benefits from the implementation of a microflow setup, leading to shorter residence times (10 min), compared to previously reported batch systems. Various azolated compounds (22 examples) are obtained in good to excellent yields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA