RESUMO
Hitchhikers (phoretic organisms) need vehicles to disperse out of unsuitable habitats. Therefore, finding vehicles with the right functional attributes is essential for phoretic organisms. To locate these vehicles, phoretic organisms employ cues within modalities, ranging from visual to chemical senses. However, how hitchhikers discriminate between individual vehicles has rarely been investigated. Using a phoretic nematode community associated with an obligate fig-fig wasp pollination mutualism, we had earlier established that hitchhiking nematodes make decisions based on vehicle species identity and number of conspecific hitchhikers already present on the vehicle. Here we investigate if hitchhikers can differentiate between physiological states of vehicles. We asked whether phoretic nematodes choose between live or dead vehicles present in a chemically crowded environment and we investigated the basis for any discrimination. We conducted two-choice and single-choice behavioral assays using single nematodes and found that plant- and animal-parasitic nematodes preferred live over dead vehicles and used volatiles as a sensory cue to make this decision. However, in single-choice assays, animal-parasitic nematodes were also attracted towards naturally dead or freeze-killed wasps. The volatile profile of the wasps was dominated by terpenes and spiroketals. We examined the volatile blend emitted by the different wasp physiological states and determined a set of volatiles that the phoretic nematodes might use to discriminate between these states which is likely coupled with respired CO2. We determined that CO2 levels emitted by single wasps are sufficient to attract nematodes, demonstrating the high sensitivity of nematodes to this metabolic product.
Assuntos
Comportamento Animal , Dióxido de Carbono/fisiologia , Nematoides/fisiologia , Compostos Orgânicos Voláteis , Vespas/química , Animais , Ecossistema , Feminino , Ficus , MasculinoRESUMO
In the fig-fig wasp nursery pollination system, parasitic wasps, such as gallers and parasitoids that oviposit from the exterior into the fig syconium (globular, enclosed inflorescence) are expected to use a variety of chemical cues for successful location of their hidden hosts. Behavioral assays were performed with freshly eclosed naive galler wasps. Syconia with different oviposition histories, i.e. with or without prior oviposition, were presented to wasps in no-choice assays and the time taken to the first oviposition attempt was recorded. The wasps exhibited a preference for syconia previously exposed to conspecifics for oviposition over unexposed syconia. Additionally, syconia exposed to oviposition by heterospecific wasps were also preferred for oviposition over unexposed syconia indicating that wasps recognise and respond to interspecific cues. Wasps also aggregated for oviposition on syconia previously exposed to oviposition by conspecifics. We investigated chemical cues that wasps may employ in accepting an oviposition resource by analyzing syconial volatile profiles, chemical footprints left by wasps on syconia, and syconial surface hydrocarbons. The volatile profile of a syconium is influenced by the identity of wasps developing within and may be used to identify suitable host syconia at long range whereas close range preference seems to exploit wasp footprints that alter syconium surface hydrocarbon profiles. These cues act as indicators of the oviposition history of the syconium, thereby helping wasps in their oviposition decisions.
Assuntos
Polinização/fisiologia , Vespas/fisiologia , Animais , Frutas/química , Frutas/metabolismo , Frutas/parasitologia , Oviposição/fisiologia , Plantas/química , Plantas/metabolismo , Plantas/parasitologia , Simbiose , Compostos Orgânicos Voláteis/química , Vespas/crescimento & desenvolvimentoRESUMO
Mutualistic associations such as the fungal farms of insects are prone to parasitism and are consequently vulnerable to attack by weeds and pests. Therefore, efficient farm management requires quick detection of weeds for their elimination. Furthermore, if the available weedicides are non-specific, then the ability of insects to discriminate between crop and weeds becomes essential for targeted application of such compounds. Here, we demonstrate for the first time in fungus-farming insects, that worker castes of the fungus-growing termite Odontotermes obesus discriminate between their crop (Termitomyces) and the weedy (Pseudoxylaria) fungi, even if exposed to only fungal scents. Termites respond to the presence of fungal mycelium or scent alone, by burying the weed with the offered material such as soil or agar, possibly anointing the weed with chemicals in the process. The scent profiles of crop and weedy fungi are distinct and the differences are likely exploited by termites to selectively mount their defences. Sesquiterpene compounds such as aristolene and viridiflorol, which are absent from crop odours, may constitute the "weedy scent". Our results provide a general mechanism of how other fungus-farming insects could avoid indiscriminate application of non-specific fungicides which could lead to poisoning their crops, and have bearing on the stability of the mutualism between termites and their crop fungus in the face of parasitism by weedy fungi.
Assuntos
Fungos/fisiologia , Isópteros/microbiologia , Isópteros/fisiologia , Odorantes/análise , Simbiose , Compostos Orgânicos Voláteis/análise , Animais , Olfato , Compostos Orgânicos Voláteis/metabolismoRESUMO
Hybridisation is common in plants and can affect the genetic diversity and ecology of sympatric parental populations. Hybrids may resemble the parental species in their ecology, leading to competition and/or gene introgression; alternatively, they may diverge from the parental phenotypes, possibly leading to the colonisation of new ecological niches and to speciation. Here, we describe inflorescence morphology, ploidy levels, pollinator attractive scents, and pollinator guilds of natural hybrids of Arum italicum and A. maculatum (Araceae) from a site with sympatric parental populations in southern France to determine how these traits affect the hybrid pollination ecology. Hybrids were characterised by inflorescences with a size and a number of flowers more similar to A. italicum than to A. maculatum. In most cases, hybrid stamens were purple, as in A. maculatum, and spadix appendices yellow, as in A. italicum. Hybrid floral scent was closer to that of A. italicum, but shared some compounds with A. maculatum and comprised unique compounds. Also, the pollinator guild of the hybrids was similar to that of A. italicum. Nevertheless, the hybrids attracted a high proportion of individuals of the main pollinator of A. maculatum. We discuss the effects of hybridisation in sympatric parental zones in which hybrids exhibit low levels of reproductive success, the establishment of reproductive barriers between parental species, the role of the composition of floral attractive scents in the differential attraction of pollinators and in the competition between hybrids and their parental species, and the potential of hybridisation to give rise to new independent lineages.
Assuntos
Arum/genética , Flores , Hibridização Genética , Fenótipo , Polinização , Animais , Ecologia , Flores/anatomia & histologia , França , Inflorescência , Insetos , Odorantes , Feromônios , Ploidias , Reprodução , Especificidade da EspécieRESUMO
This study examined whether the antidermatophytic activity of essential oils (EOs) can be used as an indicator for the discovery of active natural products against Leishmania amazonensis. The aerial parts of seven plants were hydrodistilled. Using broth microdilution techniques, the obtained EOs were tested against three strains of dermatophytes (Trichophyton mentagrophytes, Microsporum gypseum and Microsporum canis). To compare the EOs antifungal and antiparasitic effects, the EOs activities against axenic amastigotes of L. amazonensis were concurrently evaluated. For the most promising EOs, their antileishmanial activities against parasites infecting peritoneal macrophages of BALB/c mice were measured. The most interesting antifungal candidates were the EOs from Cymbopogon citratus, Otacanthus azureus and Protium heptaphyllum, whereas O. azureus, Piper hispidum and P. heptaphyllum EOs exhibited the lowest 50% inhibitory concentration (IC50) values against axenic amastigotes, thus revealing a certain correspondence between both activities. The P. hispidum EO was identified as the most promising product in the results from the infected macrophages model (IC50: 4.7 µg/mL, safety index: 8). The most abundant compounds found in this EO were sesquiterpenes, notably curzerene and furanodiene. Eventually, the evaluation of the antidermatophytic activity of EOs appears to be an efficient method for identifying new potential drugs for the treatment of L. amazonensis.
Assuntos
Antifúngicos/farmacologia , Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Óleos Voláteis/farmacologia , Animais , Cultura Axênica , Burseraceae/metabolismo , Cymbopogon/metabolismo , Substituição de Medicamentos , Furanos/administração & dosagem , Cromatografia Gasosa-Espectrometria de Massas , Compostos Heterocíclicos com 2 Anéis/administração & dosagem , Concentração Inibidora 50 , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/parasitologia , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Microsporum/efeitos dos fármacos , Piper/metabolismo , Plantago/metabolismo , Sesquiterpenos/administração & dosagem , Trichophyton/efeitos dos fármacosRESUMO
Odours emitted by human skin are of great interest to biologists in many fields, with practical applications in forensics, health diagnostic tools and the ecology of blood-sucking insect vectors of human disease. Convenient methods are required for sampling human skin volatiles under field conditions. We experimentally compared four modern methods for sampling skin odours: solvent extraction, headspace solid-phase micro-extraction (SPME), and two new techniques not previously used for the study of mammal volatiles, contact SPME and dynamic headspace with a chromatoprobe design. These methods were tested and compared both on European subjects under laboratory conditions and on young African subjects under field conditions. All four methods permitted effective trapping of skin odours, including the major known human skin volatile compounds. In both laboratory and field experiments, contact SPME, in which the time of collection was restricted to 3 min, provided results very similar to those obtained with classical headspace SPME, a method that requires 45 min of collection. Chromatoprobe sampling also proved to be very sensitive, rapid and convenient for the collection of human-produced volatiles in natural settings. Both contact SPME and chromatoprobe design may considerably facilitate the study of human skin volatiles under field conditions, opening new possibilities for examining the olfactory cues mediating the host-seeking behaviour of mosquito vectors implicated in the transmission of major diseases.
Assuntos
Fenômenos Ecológicos e Ambientais , Insetos Vetores/fisiologia , Odorantes/análise , Pele/química , Microextração em Fase Sólida/métodos , Compostos Orgânicos Voláteis/análise , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Cromatografia Gasosa , Feminino , Pé , Humanos , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
Plants produce volatile organic compounds (VOCs) in a variety of contexts that include response to abiotic and biotic stresses, attraction of pollinators and parasitoids, and repulsion of herbivores. Some of these VOCs may also exhibit diel variation in emission. In Ficus racemosa, we examined variation in VOCs released by fig syconia throughout syconium development and between day and night. Syconia are globular enclosed inflorescences that serve as developing nurseries for pollinating and parasitic fig wasps. Syconia are attacked by gallers early in their development, serviced by pollinators in mid phase, and are attractive to parasitoids in response to the development of gallers at later stages. VOC bouquets of the different development phases of the syconium were distinctive, as were their day and night VOC profiles. VOCs such as α-muurolene were characteristic of the pollen-receptive diurnal phase, and may serve to attract the diurnally-active pollinating wasps. Diel patterns of release of volatiles could not be correlated with their predicted volatility as determined by Henry's law constants at ambient temperatures. Therefore, factors other than Henry's law constant such as stomatal conductance or VOC synthesis must explain diel variation in VOC emission. A novel use of weighted gene co-expression network analysis (WGCNA) on the volatilome resulted in seven distinct modules of co-emitted VOCs that could be interpreted on the basis of syconium ecology. Some modules were characterized by the response of fig syconia to early galling by parasitic wasps and consisted largely of green leaf volatiles (GLVs). Other modules, that could be characterized by a combination of syconia response to oviposition and tissue feeding by larvae of herbivorous galler pollinators as well as of parasitized wasps, consisted largely of putative herbivore-induced plant volatiles (HIPVs). We demonstrated the usefulness of WGCNA analysis of the volatilome in making sense of the scents produced by the syconia at different stages and diel phases of their development.
Assuntos
Ficus/metabolismo , Inflorescência/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Animais , Herbivoria , Odorantes , Periodicidade , Vespas/fisiologiaRESUMO
Odors emitted by human skin are of great interest to biologists in many fields; applications range from forensic studies to diagnostic tools, the design of perfumes and deodorants, and the ecology of blood-sucking insect vectors of human disease. Numerous studies have investigated the chemical composition of skin odors, and various sampling methods have been used for this purpose. The literature shows that the chemical profile of skin volatiles varies greatly among studies, and the use of different sampling procedures is probably responsible for some of these variations. To our knowledge, this is the first review focused on human skin volatile compounds. We detail the different sampling techniques, each with its own set of advantages and disadvantages, which have been used for the collection of skin odors from different parts of the human body. We present the main skin volatile compounds found in these studies, with particular emphasis on the most frequently studied body regions, axillae, hands, and feet. We propose future directions for promising experimental studies on odors from human skin, particularly in relation to the chemical ecology of blood-sucking insects.
Assuntos
Pele/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Animais , Bactérias/metabolismo , Humanos , Odorantes/análise , Pele/microbiologia , Compostos Orgânicos Voláteis/análiseRESUMO
Sarracenia pitcher plants display interspecific differences in prey, so far only explained by pitcher morphology. We hypothesized that pitcher odours play a role in prey composition. We first compared odour and prey compositions among Sarracenia taxa grown together, forming a kinship gradient from S. purpurea known to capture primarily ants towards S. leucophylla known to capture many flying insects: S. purpurea, S. X mitchelliana, and S. X Juthatip soper & S. X leucophylla horticultural hybrids. We then measured several pitcher traits to disentangle the contributions of morphology and odour to prey variation. The pitcher odours were as diverse as those of generalist-pollinated flowers but with notable differences among taxa, reflecting their relatedness. VOC similarity analyses revealed taxon specificities, that mirrored those revealed by prey similarity analyses. S. X leucophylla stood out by being more specialised in flying insects like bees and moths and by releasing more monoterpenes known to attract flower visitors. S. X Juthatip soper trapped as many bees but fewer moths, sesquiterpenes contributing less to its scent. Ants and Diptera were the main prey of the other two with fatty-acid-derivative-dominated scents. Quantities of the different prey groups can be inferred 98% from quantities of the odour classes and pitcher dimensions. Two syndromes were revealed: ants associated with fatty-acid-derivatives and short pitchers; flying insects associated with monoterpenes, benzenoids and tall pitchers. In S. X leucophylla, emission rate of fatty-acid-derivatives and pitcher length explained most variation in ant captures; monoterpenes and pitcher length explained most variation in bee and moth captures; monoterpenes alone explained most variation in Diptera and wasp captures. Our results suggest that odours are key factors of the diet composition of pitcher plants. They support the hypothesis of perceptual exploitation of insect biases in carnivorous plants and provide new insights into the olfactory preferences of insect groups.
Assuntos
Formigas , Dípteros , Mariposas , Sarraceniaceae , Compostos Orgânicos Voláteis , Animais , Planta Carnívora , InsetosRESUMO
The dioecious Mediterranean fig, Ficus carica, displays a unique phenology in which males sometimes bloom synchronously with females (in summer), and sometimes not (in spring). Ficus carica is engaged in an obligatory mutualism with a specific pollinating wasp, which reproduces only within figs, localising them by their specific scents. We show that scents emitted by male figs show seasonal variation within individual trees. Scents of summer male figs resemble those of the co-flowering females, and are different from those of the same male trees in spring, when female figs are absent. These differences hold even if only compounds electrophysiologically active for pollinators are considered. The similar scents of summer males and females may explain why the rewardless females are still pollinated. These results offer a tractable model for future studies of intersexual chemical mimicry in mutualistic pollination interactions.
Assuntos
Ficus/fisiologia , Flores , Odorantes , Polinização , Estações do AnoRESUMO
Several vertebrates choose their mate according to genetic heterozygosity and relatedness, and use odour cues to assess their conspecifics' genetic make-up. In birds, although several species (including the black-legged kittiwake) exhibit non-random mating according to genetic traits, the cues used to assess genetic characteristics remain unknown. The importance of olfaction in birds' social behaviour is gaining attention among researchers, and it has been suggested that, as in other vertebrates, bird body scent may convey information about genetic traits. Here, we combined gas chromatography data and genetic analyses at microsatellite loci to test whether semiochemical messages in preen secretion of kittiwakes carried information about genetic heterozygosity and relatedness. Semiochemical profile was correlated with heterozygosity in males and females, while semiochemical distance was correlated with genetic distance only in male-male dyads. Our study is the first to demonstrate a link between odour and genetics in birds, which sets the stage for the existence of sophisticated odour-based mechanisms of mate choice also in birds.
Assuntos
Charadriiformes/genética , Variação Genética , Odorantes , Feromônios/genética , Animais , Charadriiformes/metabolismo , Feminino , Asseio Animal , Masculino , Feromônios/química , Comportamento Sexual Animal , Olfato , Comportamento SocialRESUMO
Cancer is the second leading cause of death in the world. Because tumors detected at early stages are easier to treat, the search for biomarkers-especially non-invasive ones-that allow early detection of malignancies remains a central goal to reduce cancer mortality. Cancer, like other pathologies, often alters body odors, and much has been done by scientists over the last few decades to assess the value of volatile organic compounds (VOCs) as signatures of cancers. We present here a quantitative review of 208 studies carried out between 1984 and 2020 that explore VOCs as potential biomarkers of cancers. We analyzed the main findings of these studies, listing and classifying VOCs related to different cancer types while considering both sampling methods and analysis techniques. Considering this synthesis, we discuss several of the challenges and the most promising prospects of this research direction in the war against cancer.
Assuntos
Neoplasias , Compostos Orgânicos Voláteis , Biomarcadores , Humanos , Odorantes , Compostos Orgânicos Voláteis/análiseRESUMO
The importance of olfaction in birds' social behavior has long been denied. Avian chemical signaling has thus been relatively unexplored. The black-legged kittiwake provides a particularly appropriate model for investigating this topic. Kittiwakes preferentially mate with genetically dissimilar individuals, but the cues used to assess genetic characteristics remain unknown. As in other vertebrates, their body odors may carry individual and sexual signatures thus potentially reliably signaling individual genetic makeup. Here, we test whether body odors in preen gland secretion and preen down feathers in kittiwakes may provide a sex and an individual signature. Using gas chromatography and mass spectrometry, we found that male and female odors differ quantitatively, suggesting that scent may be one of the multiple cues used by birds to discriminate between sexes. We further detected an individual signature in the volatile and nonvolatile fractions of preen secretion and preen down feathers. These results suggest that kittiwake body odor may function as a signal associated with mate recognition. It further suggests that preen odor might broadcast the genetic makeup of individuals, and could be used in mate choice to assess the genetic compatibility of potential mates.
Assuntos
Charadriiformes/fisiologia , Plumas/química , Feromônios/análise , Comportamento Sexual Animal , Animais , Feminino , Asseio Animal , Masculino , Glândulas Odoríferas/química , Glândulas Odoríferas/metabolismo , Caracteres SexuaisRESUMO
In a search for alternative treatment for malaria, plant-derived essential oils extracted from the stem barks and leaves of Cleistopholis patens and Uvariastrum pierreanum (Annonaceae) were evaluated in vitro for antiplasmodial activity against the W2 strain of Plasmodium falciparum. The oils were obtained from 500 g each of stem barks and leaves, respectively, by hydrodistillation, using a Clevenger-type apparatus with the following yields: 0.23% and 0.19% for C. patens and 0.1% and 0.3% for U. pierreanum (w/w relative to dried material weight). Analysis of 10% (v/v) oil in hexane by gas chromatography and mass spectrometry identified only terpenoids in the oils, with over 81% sesquiterpene hydrocarbons in C. patens extracts and U. pierreanum stem bark oil, while the leaf oil from the latter species was found to contain a majority of monoterpenes. For C. patens, the major components were α-copaene, δ-cadinene, and germacrene D for the stem bark oil and ß-caryophyllene, germacrene D, and germacrene B for the leaf oil. The stem bark oil of U. pierreanum was found to contain mainly ß-bisabolene and α-bisabolol, while α- and ß-pinenes were more abundant in the leaf extract. Concentrations of oils obtained by diluting 1-mg/mL stock solutions were tested against P. falciparum in culture. The oils were active, with IC(50) values of 9.19 and 15.19 µg/mL for the stem bark and leaf oils, respectively, of C. patens and 6.08 and 13.96 µg/mL, respectively, for those from U. pierreanum. These results indicate that essential oils may offer a promising alternative for the development of new antimalarials.
Assuntos
Annonaceae/química , Antimaláricos/farmacologia , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/química , Antimaláricos/isolamento & purificação , Camarões , Cromatografia Gasosa-Espectrometria de Massas , Concentração Inibidora 50 , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Testes de Sensibilidade Parasitária , Casca de Planta/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/químicaRESUMO
As requested by the Editorial Office, the authors remove the scientific consortium "Camille Nous" from the author list and the Author Contributions section in the published paper [...].
RESUMO
The effects of insect larval diet on adult olfactory responses to host-plant or food volatiles are still debated. The induction of adult host preferences has been studied in insects with diverse ecologies, including parasitoids, flower-visitors and phytophagous species. We investigated this question for the first time in a coprophagous insect species. Larvae of the French scarab dung beetle Agrilinus constans were reared on four different artificial substrates containing dung from cattle, horse, sheep or wild boar, and responses of imagos to dung volatiles were then behaviourally tested in an olfactometer. We also reported the first analysis of the composition of different mammal dung volatiles. We showed that adult beetles were more attracted to cattle and sheep dung odours, and that larval feeding experience had no effect on the adult olfactory responses to dung volatiles. A second experiment showed that the presence of other insects inside the dung resource affects the process of dung selection by adults. We identified 64 chemical compounds from dung emissions, and showed that dung volatiles clearly differed among different mammal species, allowing olfactory discrimination by dung beetles. Our results suggest that resource selection in coprophagous insects may be based on innate olfactory preferences. Further experiments should examine whether Agrilinus adults can learn new dung odours, and whether larval diet may influence the behaviour of adults in other coprophagous species.
Assuntos
Comportamento Animal/fisiologia , Besouros/fisiologia , Fezes/química , Preferências Alimentares/fisiologia , Odorantes , Olfato/fisiologia , Animais , Bovinos , Coprofagia , Cavalos , Larva/fisiologia , Ovinos , Suínos , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismoRESUMO
The true lavender Lavandula angustifolia Miller is a Mediterranean aromatic shrub widely cultivated for its high quality essential oil used in perfumery and phytotherapy. Despite its economic importance, the intra-specific diversity among wild, non-cultivated plants remains poorly understood. We analyzed the structure of the chemical and genetic diversity of plants from 14 sites sampled over the entire native range of the true lavender. Volatile organic compounds of inflorescences were analyzed using gas chromatography coupled to mass spectrometry. Genotyping was performed with fingerprinting genetic markers. To limit the influence of environmental variability on chemical composition, plants were grown in the same conditions in a common garden. Without prior knowledge, discriminant analysis of principal component identified unambiguously four distinct chemotypes among three genetic populations. Co-inertia analysis and supervised analysis which integrated multiple datasets indicated a strong congruency between chemical and genetic patterns. Two distinct genetic units were located at the edge of the distribution area in the south of Italy and in the northeast of Spain, and were associated with two distinct chemotypes. Our results confirmed the existence of three genetically distinct entities, suggesting speciation. All French populations and the Italian Piedmontese population were genetically homogeneous but separated in two distinct chemotypes. The dominant chemotype was present in the center of the native range in southeastern France and was at the origin of the current most cultivated French varieties. Its main compounds were linalyl acetate, linalool, and caryophyllene oxide. The second French chemotype was found in south of Massif Central and presented high abundance of valuable linalyl and lavandulyl acetates. Linalool, eucalyptol, ß-caryophyllene, borneol, camphor, and cis-sabinene-hydrate were significantly associated with southern latitudes and their role would be worth exploring.
RESUMO
Volatile organic compounds (VOCs) are produced by a broad range of organisms, from bacteria to mammals, and they represent a vast chemical diversity. In plants, one of the preeminent roles of VOCs is their repellent or cytotoxic activity, which helps the plant deter its predators. Most studies on VOCs emitted by vegetative parts have been conducted in model plant species, and little is known about patterns of VOC emissions in diverse plant communities. We conducted a survey of the VOCs released immediately after mechanical damage of the bark and the leaves of 195 individual trees belonging to 55 tropical tree species in a lowland rainforest of French Guiana. We discovered a remarkably high chemical diversity, with 264 distinct VOCs and a mean of 37 compounds per species. Two monoterpenes (alpha-pinene and limonene) and two sesquiterpenes (beta-caryophyllene and alpha-copaene), which are known to have cytotoxic and deterrent effects, were the most frequent compounds in the sampled species. As has been established for floral scents, the blend of VOCs is largely species-specific and could be used to discriminate among 43 of the 55 sampled species. The species with the most diverse blends were found in the Sapindales, Laurales, and Magnoliales, indicating that VOC diversity is not uniformly distributed among tropical species. Interspecific variation in chemical diversity was caused mostly by variation in sesquiterpenes. This study emphasizes three aspects of VOC emission by tropical tree species: the species-specificity of the mixtures, the importance of sesquiterpenes, and the wide-ranging complexity of the mixtures.
Assuntos
Coleta de Dados , Compostos Orgânicos/química , Compostos Orgânicos/metabolismo , Árvores/metabolismo , Clima Tropical , Análise por Conglomerados , Bases de Dados Factuais , Guiana Francesa , Compostos Orgânicos/análise , Casca de Planta/metabolismo , Casca de Planta/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Especificidade da Espécie , Árvores/fisiologia , VolatilizaçãoRESUMO
The chemical composition of five column fractions of hexanic leaf extract of Cupressus lusitanica were analysed by gas chromatography and gas chromatography-mass spectrometry and then tested for their antidermatophytic activities using the agar dilution method. The first fraction (F(1)) has only hydrocabon monoterpenes with alpha-pinene (80.0%) as major component. The main constituents of the second fraction (F(2)) were epi-bicyclosesquiphellandrene (35.3%), epi-zonarene (10.3%), 1S, cis-calamenene (13.1%) and beta-himachalene (10.4%). The third fraction (F(3)) was rich in hydrocarbon sesquiterpenes (45.4%) and a relatively high amount of diterpenes (29.8%) with epi-bicyclosesquiphellandrene (14.3%), pimaric acid (7.5%), kaurenoic acid (6.9%) and 8-beta-hydroxysandaracopimarane (3.5%) as main components. The last two fractions contain high molecular weight aliphatic hydrocarbons, their main constituents been eicosane (41.1%) and tricosane (37.3%) and heptacosane (22.1%). The agar dilution method was used to evaluate the antifungal properties of the crude extract and its fractions. These fractions showed several degrees of antidermatophytic activities against Microsporum audouinii, Microsporum Langeronii, Microsporum canis, Trichophyton rubrum and Trichophyton tonsurans. Fractions F(1) and F(3) exhibited the highest antidermatophytic activities with repective MICs of 250 and 125 mug/ml while the fractions F(4) and F(5) did not prevent the growth of the tested fungi up to dose 2,500 mug/ml.
Assuntos
Antifúngicos/química , Cupressus , Extratos Vegetais/química , Folhas de Planta/química , Plantas Medicinais/química , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Camarões , Cromatografia Gasosa-Espectrometria de Massas , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologiaRESUMO
Twelve French Asplenioideae ferns (genera Asplenium and subgenera Ceterach and Phyllitis) were investigated for the first time for volatile organic compounds (VOC) using GC-MS. Sixty-two VOC biosynthesized from the lipidic, shikimic, terpenic and carotenoid pathways were identified. Several VOC profiles can be highlighted from Asplenium jahandiezii and A. xalternifolium with exclusively lipidic derivatives to A. onopteris with an equal ratio of lipidic/shikimic compounds. Very few terpenes as caryophyllene derivatives were identified, but only in A. obovatum subsp. bilotii. The main odorous lipidic derivatives were (E)-2-decenal (waxy and fatty odor), nonanal (aldehydic and waxy odor with a fresh green nuance), (E)-2-heptenal (green odor with a fatty note) and 1-octen-3-ol (mushroom-like odor), reported for all species. A few VOC are present in several species in high content, i.e., 9-oxononanoic acid used as a precursor for biopolymers (19% in A. jahandiezii), 4-hydroxyacetophenone with a sweet and heavy floral odor (17.1% in A. onopteris), and 4-hydroxybenzoic acid used as a precursor in the synthesis of parabens (11.3% in A. foreziense). Most of the identified compounds have pharmacological activities, i.e., octanoic acid as antimicrobial, in particular against Salmonellas, with fatty and waxy odor (41.1% in A. petrarchae), tetradecanoic acid with trypanocidal activity (13.3% in A. obovatum subsp. bilotii), 4-hydroxybenzoic acid (8.7% in A. onopteris) with antimicrobial and anti-aging effects, 3,4-dihydroxybenzaldehyde as an inhibitor of growth of human cancer cells (6.7% in Ceterach officinarum), and phenylacetic acid with antifungal and antibacterial activities (5.8% in A. onopteris). Propionylfilicinic acid was identified in the twelve species. The broad spectrum of odorous and bioactive VOC identified from the Asplenium, Ceterach and Phyllitis species are indeed of great interest to the cosmetic and food industries.