Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Intervirology ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39068921

RESUMO

INTRODUCTION: The effect of maltodextrin-based nanoparticles with an anionic phospholipid core (NPLs) on the infection of a human tumoral cell line with poliovirus (PV) has been studied. METHODS: NPLs were synthesized and associated with PV type 1 Sabin strain and the formulations were characterized. PV and PV/NPL formulations were inoculated to HEp-2 cells. RESULTS: The surface charge and the diameter of PV/NPL formulation suggest that viral particles were adsorbed onto NPLs. When HEp-2 cells were inoculated with 1 TCID50/mL PV associated with NPLs, the cytopathic effect appeared obvious; the levels of infectious titer of culture supernatants, and the proportion of VP1-positive cells were higher. The level of intracellular viral RNA extracted from HEp-2 cells inoculated with PV/NPL formulation was higher as well. CONCLUSION: These results show that NPLs can enhance the infection with a virus and suggest that they might be used in virotherapy to increase the virus-mediated lysis of tumor cells.

2.
J Hepatol ; 70(6): 1159-1169, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30685324

RESUMO

BACKGROUND & AIMS: In liver transplantation, organ shortage leads to the use of marginal grafts that are more susceptible to ischemia-reperfusion (IR) injury. We identified nucleotide-binding oligomerization domain 1 (NOD1) as an important modulator of polymorphonuclear neutrophil (PMN)-induced liver injury, which occurs in IR. Herein, we aimed to elucidate the role of NOD1 in IR injury, particularly focusing on its effects on the endothelium and hepatocytes. METHOD: Nod1 WT and KO mice were treated with NOD1 agonists and subjected to liver IR. Expression of adhesion molecules was analyzed in total liver, isolated hepatocytes and endothelial cells. Interactions between PMNs and hepatocytes were studied in an ex vivo co-culture model using electron microscopy and lactate dehydrogenase levels. We generated NOD1 antagonist-loaded nanoparticles (np ALINO). RESULTS: NOD1 agonist treatment increased liver injury, PMN tissue infiltration and upregulated ICAM-1 and VCAM-1 expression 20 hours after reperfusion. NOD1 agonist treatment without IR increased expression of adhesion molecules (ICAM-1, VCAM-1) in total liver and more particularly in WT hepatocytes, but not in Nod1 KO hepatocytes. This induction is dependent of p38 and ERK signaling pathways. Compared to untreated hepatocytes, a NOD1 agonist markedly increased hepatocyte lysis in co-culture with PMNs as shown by the increase of lactate dehydrogenase in supernatants. Interaction between hepatocytes and PMNs was confirmed by electron microscopy. In a mouse model of liver IR, treatment with np ALINO significantly reduced the area of necrosis, aminotransferase levels and ICAM-1 expression. CONCLUSION: NOD1 regulates liver IR injury through induction of adhesion molecules and modulation of hepatocyte-PMN interactions. NOD1 antagonist-loaded nanoparticles reduced liver IR injury and provide a potential approach to prevent IR, especially in the context of liver transplantation. LAY SUMMARY: Nucleotide-binding oligomerization domain 1 (NOD1) is as an important modulator of polymorphonuclear neutrophil (PMN)-induced liver injury, which occurs in ischemia-reperfusion. Here, we show that the NOD1 pathway targets liver adhesion molecule expression on the endothelium and on hepatocytes through p38 and ERK signaling pathways. The early increase of adhesion molecule expression after reperfusion emphasizes the importance of adhesion molecules in liver injury. In this study we generated nanoparticles loaded with NOD1 antagonist. These nanoparticles reduced liver necrosis by reducing PMN liver infiltration and adhesion molecule expression.


Assuntos
Molécula 1 de Adesão Intercelular/fisiologia , Fígado/irrigação sanguínea , Proteína Adaptadora de Sinalização NOD1/fisiologia , Traumatismo por Reperfusão/prevenção & controle , Molécula 1 de Adesão de Célula Vascular/fisiologia , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/fisiologia , Proteína Adaptadora de Sinalização NOD1/agonistas , Transdução de Sinais/fisiologia
3.
Bioconjug Chem ; 29(2): 493-502, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29299922

RESUMO

Enzyme replacement therapy (ERT) is a therapeutic approach envisioned decades ago for the correction of genetic disorders, but ERT has been less successful for the correction of disorders with neurological manifestations. In this work, we have tested the functionality of nanoparticles (NP) composed of maltodextrin with a lipid core to bind and stabilize tyrosine hydroxylase (TH). This is a complex and unstable brain enzyme that catalyzes the rate-limiting step in the synthesis of dopamine and other catecholamine neurotransmitters. We have characterized these TH-loaded NPs to evaluate their potential for ERT in diseases associated with TH dysfunction. Our results show that TH can be loaded into the lipid core maltodextrin NPs with high efficiency, and both stability and activity are maintained through loading and are preserved during storage. Binding to NPs also favored the uptake of TH to neuronal cells, both in cell culture and in the brain. The internalized NP-bound TH was active as we measured an increase in intracellular L-Dopa synthesis following NP uptake. Our approach seems promising for the use of catalytically active NPs in ERT to treat neurodegenerative and neuropsychiatric disorders characterized by dopamine deficiency, notably Parkinson's disease.


Assuntos
Encéfalo/metabolismo , Portadores de Fármacos/química , Nanopartículas/química , Neurônios/metabolismo , Polissacarídeos/química , Tirosina 3-Mono-Oxigenase/administração & dosagem , Tirosina 3-Mono-Oxigenase/farmacocinética , Animais , Linhagem Celular , Estabilidade Enzimática , Terapia Enzimática , Feminino , Humanos , Masculino , Modelos Moleculares , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/enzimologia
4.
Electrophoresis ; 38(19): 2536-2541, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28370074

RESUMO

A reversed-phase high-performance liquid chromatography (RP-HPLC) method has been developed and validated for the quantification of paclitaxel encapsulated in biodegradable poly(lactic-co-glycolic) (PLGA) copolymer nanoparticles. This simple (isocratic mode, without additive) and rapid (retention time of the paclitaxel under 4 min) methodology permits the detection of low quantities of paclitaxel in nanoparticulate formulations and the determination of the encapsulation efficiency (EE). Analysis was achieved on an octadecyl stationary phase. The isocratic mobile phase consisted of acetonitrile:water 80:20 (v/v) (flow rate = 0.8 mL/min). Stability of free paclitaxel was preliminary studied in those chromatographic conditions. The calibration curve was linear in the concentration range of 2-10 µg/mL (R2  = 0.9994). The method was specific with valuable trueness, repeatability (intra-day precision) and intermediate precision (inter-day precision) based on relative standard deviation (RSD) values (less than 2%). The limits of detection (LOD) and quantification (LOQ) were 0.56 and 1.85 ng/mL, respectively. This developed method was successfully employed for quantifying paclitaxel in PLGA 50:50 co-polymer nanoparticles. The accurate knowledge of the encapsulated paclitaxel concentration is essential to define the quantities of PLGA nanoparticles necessary to achieve the in vitro cell viability study.


Assuntos
Antineoplásicos/análise , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Ácido Láctico/química , Paclitaxel/análise , Ácido Poliglicólico/química , Calibragem , Química Farmacêutica , Estabilidade de Medicamentos , Células HT29 , Humanos , Limite de Detecção , Células MCF-7 , Nanocápsulas , Paclitaxel/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Espectrofotometria Ultravioleta
5.
J Appl Toxicol ; 36(3): 434-44, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26487569

RESUMO

With the ongoing commercialization of nanotechnology products, human exposure to nanoparticles (NPs) is set to increase dramatically and an evaluation of their potential adverse effects is essential. Surface charge, among other physico-chemicals parameters, is a key criterion that should be considered when using a definition for nanomaterials in a regulatory context. It has recently been recognized as an important factor in determining the toxicity of NPs; however, a complete understanding of the mechanisms involved is still lacking. In this context, the aim of the present study was to investigate the influence of the surface charge modification of NPs on in vitro toxicity assays. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles bearing different surface charges, positive(+), neutral(n) or negative(-), were synthesized. In vitro genotoxicity assays (micronucleus and comet assays) coupled with an assessment of cytotoxicity, were performed in different cell lines (L5178Y mouse lymphoma cells, TK6 human B-lymphoblastoid cells and 16HBE14o- human bronchial epithelial cells). Reactive oxygen species (ROS) production and endocytosis studies were also performed. Our results showed that PLGA(+) NPs were cytotoxic. They are endocytosed by the clathrin pathway and induced ROS in the three cell lines. They led to chromosomal aberrations without primary DNA damage in 16HBE14o- cells, suggesting that aneuploidy may be considered as an important biomarker when assessing the genotoxic potential of NPs. Moreover, 16HBE14o- cells seem to be more suitable for the in vitro screening of inhaled NPs than the regulatory L5178Y and TK6 cells.


Assuntos
Dano ao DNA , Endocitose , Ácido Láctico/toxicidade , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Nanopartículas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Ácido Poliglicólico/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Aneuploidia , Animais , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Brônquios/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Clatrina/metabolismo , Ensaio Cometa , Relação Dose-Resposta a Droga , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Ácido Láctico/química , Ácido Láctico/metabolismo , Linfoma/genética , Linfoma/metabolismo , Linfoma/patologia , Camundongos , Testes para Micronúcleos , Nanopartículas/química , Nanopartículas/metabolismo , Ácido Poliglicólico/química , Ácido Poliglicólico/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Medição de Risco , Propriedades de Superfície
6.
PLoS One ; 19(5): e0301687, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38718078

RESUMO

In the monitoring of human Toxoplasma gondii infection, it is crucial to confirm the development of a specific Th1/Th17 immune response memory. The use of a simple, specific, and sensitive assay to follow the T-cell activation is thus required. Current protocols are not always specific as stimulation with peptides is Human Leukocyte Antigen (HLA)-dependent, while stimulation with total-lysis antigens tends to stimulate seronegative donors resulting to false positives. Here, an improved ELISPOT protocol is reported, using peripheral blood mononuclear cells (PBMC) of T.gondii-infected donors, incubated with the inactivated parasite. The results showed that, contrary to standard protocols, a pre-incubation step at high cell density in presence of the inactivated parasite allowed a specific Th1/Th17 response with the secretion of IFN-γ, IL-2, IL-12 and IL-17 cytokines. This protocol allows to evaluate precisely the immune response after a T.gondii infection.


Assuntos
ELISPOT , Células Th1 , Células Th17 , Toxoplasma , Toxoplasmose , Humanos , Células Th1/imunologia , Células Th17/imunologia , ELISPOT/métodos , Toxoplasmose/imunologia , Toxoplasma/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Leucócitos Mononucleares/imunologia , Interferon gama/imunologia , Interferon gama/metabolismo
7.
Pharmaceutics ; 16(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38399301

RESUMO

Nanoparticles are increasingly being studied as antigen delivery systems for immunization with nasal vaccines. The addition of adjuvants is still generally required in many nanoparticle formulations, which can induce potential side effects owing to mucosal reactogenicity. In contrast, maltodextrin nanoparticles do not require additional immunomodulators, and have been shown to be efficient vaccine delivery systems. In this review, the development of maltodextrin nanoparticles is presented, specifically their physico-chemical properties, their ability to load antigens and deliver them into airway mucosal cells, and the extent to which they trigger protective immune responses against bacterial, viral, and parasitic infections. We demonstrate that the addition of lipids to maltodextrin nanoparticles increases their potency as a vaccine delivery system for nasal administration.

8.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38724195

RESUMO

Toxoplasmosis is the most prevalent parasitic zoonosis worldwide, causing ocular and neurological diseases. No vaccine has been approved for human use. We evaluated the response of peripheral blood mononuclear cells (PBMCs) to a novel construct of Toxoplasma gondii total antigen in maltodextrin nanoparticles (NP/TE) in individuals with varying infectious statuses (uninfected, chronic asymptomatic, or ocular toxoplasmosis). We analyzed the concentration of IFN-γ after NP/TE ex vivo stimulation using ELISA and the immunophenotypes of CD4+ and CD8+ cell populations using flow cytometry. In addition, serotyping of individuals with toxoplasmosis was performed by ELISA using GRA6-derived polypeptides. Low doses of NP/TE stimulation (0.9 µg NP/0.3 µg TE) achieved IFN-γ-specific production in previously exposed human PBMCs without significant differences in the infecting serotype. Increased IFN-γ expression in CD4+ effector memory cell subsets was found in patients with ocular toxoplasmosis with NP/TE but not with TE alone. This is the first study to show how T-cell subsets respond to ex vivo stimulation with a vaccine candidate for human toxoplasmosis, providing crucial insights for future clinical trials.


Assuntos
Antígenos de Protozoários , Interferon gama , Ativação Linfocitária , Nanopartículas , Polissacarídeos , Toxoplasma , Toxoplasmose , Humanos , Nanopartículas/química , Polissacarídeos/imunologia , Toxoplasma/imunologia , Antígenos de Protozoários/imunologia , Toxoplasmose/imunologia , Interferon gama/metabolismo , Interferon gama/imunologia , Ativação Linfocitária/imunologia , Feminino , Adulto , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Masculino , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Pessoa de Meia-Idade
9.
PLoS Negl Trop Dis ; 17(5): e0011360, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37216392

RESUMO

BACKGROUND: Canine Leishmaniasis (CanL) caused by the L. infantum species is one of the biggest threats to the health of the South American canine population. Chemotherapeutics currently used for the treatment of CanL fail to induce a total parasite clearance while inducing numerous side effects. As CanL is an immunomodulated disease, the use of immuno-treatments should strengthen the deficient immune response of infected dogs. In this study, we evaluated a nasally administered immunotherapy in dogs naturally infected with L. infantum (stage 2), with both visceral and cutaneous manifestations. Noteworthy, some of them were also infected by other parasites (E. canis, D. immitis, A. platys), what worsen their chance of survival. METHODOLOGY/PRINCIPAL FINDINGS: The treatment was based on 2 intranasal (IN.) administrations of a killed L. infantum parasite loaded into maltodextrin nanoparticles, which treatment was compared with the classical oral administration of Miltefosine (2 mg/kg) for 28 days, as well as a combination of these 2 treatments. The results showed that two IN administrations significantly reduced the serology, and were at least as efficient as the chemotherapy to reduce the skin and bone marrow parasite burden, as well as clinical scores, and that unlike Miltefosine treatments, this nasally administered nanoparticle vaccine was without side effects. CONCLUSIONS: These results confirm the feasibility of a simple therapeutic immuno-treatment against L. infantum infected dogs, which is a promising tool for future developments.


Assuntos
Doenças do Cão , Leishmania infantum , Leishmaniose Visceral , Leishmaniose , Cães , Animais , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/veterinária , Doenças do Cão/tratamento farmacológico , Leishmaniose/tratamento farmacológico , Leishmaniose/veterinária
10.
Int J Parasitol Parasites Wildl ; 22: 69-74, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37720360

RESUMO

Toxoplasma gondii is an intracellular protozoon found worldwide, which completes its life cycle between felids (its definitive host) and other warm-blooded animals. While the infection rarely leads to severe complications in humans, many animal species are very susceptible to this infection, for example the squirrel monkey (Saimiri sciureus) which is the subject of this study. Toxoplasmosis is lethal for 80% of cases in this species, and fatal outbreaks are frequently reported in zoological parks. No efficient treatment exists, but a new vaccine prepared with maltodextrin nanoparticles containing killed T. gondii antigens has been tested recently in French zoos. The animals were immunized through heterologous administrations, with two nasal doses at one-month interval, followed by nasal/subcutaneous boosts thereafter. No death has been reported since the beginning of this vaccination campaign, but we felt the protocol could be simplified. Here, an improved and less-invasive immunization protocol was evaluated on 6 Saimiri sciureus in the French zoo La Palmyre. It consisted of two nasal administrations at one-month interval, followed by a nasal boost at 6 months. A specific memory T-cell immunity was observed by ELISPOT after two administrations in all the animals, without humoral responses. The results suggest that 2 nasal administrations induce a protective immune response against T. gondii infection and might be sufficient to induce a strong Tcell memory, further improving immunity.

11.
Int J Parasitol ; 53(7): 333-346, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36997082

RESUMO

Squirrel monkeys (Saimiri spp.), new world primates from South America, are very susceptible to toxoplasmosis. Numerous outbreaks of fatal toxoplasmosis in zoos have been identified around the world, resulting in acute respiratory distress and sudden death. To date, preventive hygiene measures or available treatments are not able to significantly reduce this mortality in zoos. Therefore, vaccination seems to be the best long-term solution to control acute toxoplasmosis. Recently, we developed a nasal vaccine composed of total extract of soluble proteins of Toxoplasma gondii associated with muco-adhesive maltodextrin-nanoparticles. The vaccine, which generated specific cellular immune responses, demonstrated efficacy against toxoplasmosis in murine and ovine experimental models. In collaboration with six French zoos, our vaccine was used as a last resort in 48 squirrel monkeys to prevent toxoplasmosis. The full protocol of vaccination includes two intranasal sprays followed by combined intranasal and s.c. administration. No local or systemic side-effects were observed irrespective of the route of administration. Blood samples were collected to study systemic humoral and cellular immune responses up to 1 year after the last vaccination. Vaccination induced a strong and lasting systemic cellular immune response mediated by specific IFN-γ secretion by peripheral blood mononuclear cells. Since the introduction of vaccination, no deaths of squirrel monkeys due to T. gondii has been observed for more than 4 years suggesting the promising usage of our vaccine. Moreover, to explain the high susceptibility of naive squirrel monkeys to toxoplasmosis, their innate immune sensors were investigated. It was observed that Toll-like and Nod-like receptors appear to be functional following T. gondii recognition suggesting that the extreme susceptibility to toxoplasmosis may not be linked to innate detection of the parasite.


Assuntos
Nanopartículas , Vacinas Protozoárias , Toxoplasma , Toxoplasmose Animal , Animais , Ovinos , Camundongos , Saimiri/parasitologia , Toxoplasmose Animal/parasitologia , Leucócitos Mononucleares , Vacinação , Antígenos de Protozoários , Proteínas de Protozoários , Anticorpos Antiprotozoários , Camundongos Endogâmicos BALB C
12.
Pharm Res ; 29(6): 1495-505, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22167349

RESUMO

PURPOSE: Nanomedicines represent an alternative for the treatment of aggressive glioblastoma tumors. Behaviour of PLGA-nanoparticles (NPs) was here investigated as a function of their protein adsorption characteristics at the different biological interfaces they are expected to face in order to reach brain cancer cells. METHODS: NPs were studied for size, zeta potential, blood half-life, in vitro endocytic behavior and in vivo accumulation within healthy rat brain and brain tumors. RESULTS: While slightly modifying size (80 to 90 nm) and zeta potential (-44 to -32 mV) protein coating of PLGA-NPs by bovine serum albumin (BSA) or transferrin (Tf) greatly prolonged their blood half-life when intravenously injected in rats and mice. In contrast with THP-1 monocytes, differentiated THP-1 macrophages, F98 glioma cells and astrocytes internalized BSA- and Tf-NPs in vitro. Increase of Tf-NP uptake by F98 cells through caveolae- and clathrin-mediated pathways supports specific interaction between Tf and overexpressed Tf-receptor. Finally, in vivo targeting of healthy brain was found higher with Tf-NPs than with BSA-NPs while both NPs entered massively within brain-developed tumors. CONCLUSION: Taken together, those data evidence that Tf-NPs represent an interesting nanomedicine to deliver anticancer drugs to glioma cells through systemic or locoregional strategies at early and late tumor stages.


Assuntos
Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/metabolismo , Portadores de Fármacos , Glioma/metabolismo , Ácido Láctico/farmacocinética , Nanopartículas , Nanotecnologia , Ácido Poliglicólico/farmacocinética , Tecnologia Farmacêutica/métodos , Transferrina/farmacocinética , Adsorção , Animais , Astrócitos/metabolismo , Neoplasias Encefálicas/patologia , Permeabilidade Capilar , Cavéolas/metabolismo , Linhagem Celular Tumoral , Química Farmacêutica , Clatrina/metabolismo , Composição de Medicamentos , Endocitose , Feminino , Glioma/patologia , Meia-Vida , Injeções Intravenosas , Ácido Láctico/administração & dosagem , Ácido Láctico/sangue , Ácido Láctico/química , Macrófagos/metabolismo , Camundongos , Monócitos/metabolismo , Ácido Poliglicólico/administração & dosagem , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Ratos Endogâmicos F344 , Receptores da Transferrina/metabolismo , Distribuição Tecidual , Transferrina/administração & dosagem , Transferrina/química
13.
PLoS One ; 17(7): e0272234, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35905121

RESUMO

The nasal route of immunization has become a real alternative to injections. It is indeed described as more efficient at inducing immune protection, since it initiates both mucosal and systemic immunity, thus protecting against both the infection itself and the transmission of pathogens by the host. However, the use of immunomodulators should be limited since they induce inflammation. Here we investigated in vitro the mechanisms underlying the enhancement of antigen immunogenicity by starch nanoparticles (NPL) delivery systems in H292 epithelial cells, as well as the NPL's immunomodulatory effect. We observed that NPL had no intrinsic immunomodulatory effect but enhanced the immunogenicity of an E. coli lysate (Ag) merely by increasing its intracellular delivery. Moreover, we demonstrated the importance of the NPL density on their efficiency by comparing reticulated (NPL) and non-reticulated particles (NPL·NR). These results show that an efficient delivery system is sufficient to induce a mucosal immune response without the use of immunomodulators.


Assuntos
Nanopartículas , Amido , Adjuvantes Imunológicos , Administração Intranasal , Antígenos , Escherichia coli , Imunidade nas Mucosas
14.
Int J Pharm X ; 4: 100114, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35295898

RESUMO

Inflammatory bowel disease (IBD), encompassing Crohn's disease and ulcerative colitis, is a long-term condition resulting from self-sustained intestinal inflammation. Curcumin (Cur), a powerful, naturally occurring antioxidant and anti-inflammatory polyphenol, has been investigated as a therapeutic for IBD, but its poor stability and low bioavailability limits its efficacy. We investigated the use of crosslinked starch nanocarrier (NPL) on the intracellular delivery and the anti-inflammatory efficiency of curcumin. Caco-2 epithelial cells were stimulated with TNFα for 24 h and the anti-inflammatory effects of NPL/Cur formulations were evaluated at the early stages of inflammation (4 h) or later, when fully established (24 h). NPL allowed the intracellular delivery of curcumin, which was enhanced in inflammatory cells, due to a modification of the endocytosis pathways. NPL/Cur decreased the secretion of pro-inflammatory cytokines IL-1ß, IL-6 and IL-8 while increasing the anti-inflammatory cytokine IL-10. Finally, the inflammation-related opening of the tight junctions better allowed NPL/Cur to cross the epithelium by paracellular transport. This was confirmed by ex vivo analysis where NPL/Cur, administered to colonic explants from chemically-induced acute colitis mouse model, delivered curcumin deeper in the epithelium. To conclude, NPL/Cur formulation emphasizes the anti-inflammatory effects of curcumin and could constitute a therapeutic alternative in the management of IBD.

15.
PLoS Negl Trop Dis ; 15(8): e0009627, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34403413

RESUMO

Visceral leishmaniasis is a protozoan disease associated with high fatality rate in developing countries. Although the drug pipeline is constantly improving, available treatments are costly and live-threatening side effects are not uncommon. Moreover, an approved vaccine against human leishmaniasis does not exist yet. Using whole antigens from Leishmania donovani promastigotes (LdAg), we investigated the protective potential of a novel adjuvant-free vaccine strategy. Immunization of mice with LdAg via the intradermal or the intranasal route prior to infection decreases the parasitic burden in primary affected internal organs, including the liver, spleen, and bone marrow. Interestingly, the intranasal route is more efficient than the intradermal route, leading to better parasite clearance and remarkable induction of adaptive immune cells, notably the helper and cytotoxic T cells. In vitro restimulation experiments with Leishmania antigens led to significant IFN-γ secretion by splenocytes; therefore, exemplifying specificity of the adaptive immune response. To improve mucosal delivery and the immunogenic aspects of our vaccine strategy, we used polysaccharide-based nanoparticles (NP) that carry the antigens. The NP-LdAg formulation is remarkably taken up by dendritic cells and induces their maturation in vitro, as revealed by the increased expression of CD80, CD86 and MHC II. Intranasal immunization with NP-LdAg does not improve the parasite clearance in our experimental timeline; however, it does increase the percentage of effector and memory T helper cells in the spleen, suggesting a potential induction of long-term memory. Altogether, this study provides a simple and cost-effective vaccine strategy against visceral leishmaniasis based on LdAg administration via the intranasal route, which could be applicable to other parasitic diseases.


Assuntos
Antígenos de Protozoários/imunologia , Medula Óssea/parasitologia , Vacinas contra Leishmaniose/imunologia , Leishmaniose Visceral/imunologia , Fígado/parasitologia , Baço/parasitologia , Imunidade Adaptativa , Adjuvantes Imunológicos/administração & dosagem , Administração Intranasal , Animais , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/administração & dosagem , Antígenos de Protozoários/sangue , Medula Óssea/metabolismo , Feminino , Imunização , Interferon gama/metabolismo , Leishmania donovani/imunologia , Vacinas contra Leishmaniose/administração & dosagem , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/prevenção & controle , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Baço/metabolismo
16.
Pharm Res ; 27(1): 126-33, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19851846

RESUMO

PURPOSE: Stealth nanoparticles are generally obtained after modifying their surface with hydrophilic polymers, such as PEG. In this study, we analysed the effect of a phospholipid (DG) or protein (BSA) inclusion in porous cationic polysaccharide (NP(+)) on their physico-chemical structure and the effect on complement activation. METHODS: NP(+)s were characterised in terms of size, zeta potential (zeta) and static light scattering (SLS). Complement consumption was assessed in normal human serum (NHS) by measuring the residual haemolytic capacity of the complement system. RESULTS: DG loading did not change their size or zeta, whereas progressive BSA loading lightly decreased their zeta. An electrophoretic mobility analysis study showed the presence of two differently-charged sublayers at the NP(+) surface which are not affected by DG loading. Complement system activation, studied via a CH50 test, was suppressed by DG or BSA loading. We also demonstrated that NP(+)s could be loaded by a polyanionic molecule, such as BSA, after their preliminary filling by a hydrophobic molecule, such as DG. CONCLUSION: These nanoparticles are able to absorb large amounts of phospholipids or proteins without change in their size or zeta potential. Complement studies showed that stealth behaviour is observed when they are loaded and saturated either with anionic phospholipid or proteins.


Assuntos
Ativação do Complemento/efeitos dos fármacos , Portadores de Fármacos/síntese química , Composição de Medicamentos/métodos , Nanopartículas/química , Polissacarídeos/química , Ânions/química , Ânions/farmacologia , Cátions/química , Cátions/farmacologia , Portadores de Fármacos/farmacologia , Eletroforese/métodos , Humanos , Modelos Químicos , Tamanho da Partícula , Polissacarídeos/imunologia , Propriedades de Superfície
17.
Nanotechnology ; 21(35): 355102, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20689164

RESUMO

A major challenge of drug delivery using colloids via the airway is to understand the mechanism implied in their interactions with epithelial cells. The purpose of this work was to characterize the process of endocytosis and exocytosis of cationic nanoparticles (NPs) made of maltodextrin which were developed as a delivery system for antigens in vaccine applications. Confocal microscopy demonstrated that these NP are rapidly endocytosed after as little as 3 min incubation, and that the endocytosis was also faster than NP binding since most of the NPs were found in the middle of the cells around the nuclei. A saturation limit was observed after a 40 min incubation, probably due to an equilibrium becoming established between endocytosis and exocytosis. Endocytosis was dramatically reduced at 4 degrees C compared with 37 degrees C, or by NaN(3) treatment, both results suggesting an energy dependent process. Protamine pretreatment of the cells inhibited NPs uptake and we found that clathrin pathway is implied in their endocytosis. Cholesterol depletion increased NP uptake by 300% and this phenomenon was explained by the fact that cholesterol depletion totally blocked NP exocytosis. These results suggest that these cationic NPs interact with anionic sites, are quickly endocytosed via the clathrin pathway and that their exocytosis is cholesterol dependent, and are similar to those obtained in other studies with viruses such as influenza.


Assuntos
Nanopartículas , Mucosa Respiratória/metabolismo , Cátions/química , Cátions/farmacocinética , Linhagem Celular , Clatrina/metabolismo , Sistemas de Liberação de Medicamentos , Endocitose/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Humanos , Cinética , Microscopia Confocal , Polissacarídeos/metabolismo , Protaminas/metabolismo , Temperatura
18.
Nanotechnology ; 21(50): 505102, 2010 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-21098928

RESUMO

There is a real need to develop new therapeutic strategies for African trypanosomiasis infections. In our study, we developed a new drug delivery system of diminazene (DMZ), a trypanocidal drug registered for veterinary use. This drug candidate presents a limited efficacy, a poor affinity for brain tissue and instability. The development of colloidal formulations based on a porous cationic nanoparticle with an oily core ((70)DGNP(+)), has potentially two advantages: stabilization of the drug and potential targeting of the parasite. We analyzed two processes of drug loading: in process (DMZ was added during the preparation of (70)DGNP(+) at 80 °C) and post-loading (DMZ was mixed with a (70)DGNP(+) solution at room temperature). Poor stability of the drug was observed using the in process technique. When using the post-loading technique over 80% drug entrapment efficiency was obtained at a ratio of DMZ:phospholipids (wt:wt) < 5%. Moreover, DMZ loaded into (70)DGNP(+) was found to be protected against oxidation and was stable for at least six months at 4 °C. Finally, in vitro tests on T.b. brucei showed an increased efficacy of DMZ loaded in (70)DGNP(+).


Assuntos
Diminazena/administração & dosagem , Diminazena/uso terapêutico , Nanopartículas/química , Tripanossomicidas/administração & dosagem , Tripanossomicidas/uso terapêutico , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/veterinária , Animais , Diminazena/farmacologia , Sistemas de Liberação de Medicamentos , Estabilidade de Medicamentos , Camundongos , Oxirredução , Fosfolipídeos/química , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos
19.
J Mater Sci Mater Med ; 21(9): 2673-81, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20535631

RESUMO

The aim of present study is to conceive a biodegradable poly(ethylene glycol)-polylactide (PEG-PLA) copolymer nanoparticle which can be surface biofunctionalized with ligands via biotin-avidin interactions and used as a potential drug delivery carrier targeting to brain glioma in vivo. For this aim, a new method was employed to synthesize biotinylated PEG-PLA copolymers, i.e., esterification of PEG with biotinyl chloride followed by copolymerization of hetero-biotinylated PEG with lactide. PEG-PLA nanoparticles bearing biotin groups on surface were prepared by nanoprecipitation technique and the functional protein transferrin (Tf) were coupled to the nanoparticles by taking advantage of the strong biotin-avidin complex formation. The flow cytometer measurement demonstrated the targeting ability of the nanoparticles to tumor cells in vitro, and the fluorescence microscopy observation of brain sections from C6 glioma tumor-bearing rat model gave the intuitive proof that Tf functionalized PEG-PLA nanoparticles could penetrate into tumor in vivo.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Ácido Láctico/química , Micelas , Polietilenoglicóis/química , Transferrina/química , Humanos
20.
ACS Appl Bio Mater ; 3(9): 5741-5749, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35021805

RESUMO

Nanoparticles (NPs) used as mucosal antigen delivery systems are a promising way to vaccinate. However, NPs have to cross the mucus gel and penetrate into mucosal cells to deliver antigens, and a mismatch exists between mucopenetrating NPs, rarely able to interact with cells, and NPs designed to deliver antigens into cells, but often described as mucoadhesives. Here, we compared the ability of cationic maltodextrin-based NPs, either without (NP+) or with an anionic phospholipid core (NPL), to interact with mucins and airway epithelial cells. We showed that their lipid core increased the NPL's mobility in mucin hydrogel by reducing interactions with mucins. Similarly, the uptake and protein delivery by NPLs into airway epithelial cells were not hindered by mucins. This highlights the importance of anionic lipids in the NPL, which are more efficient in crossing the mucin hydrogel while retaining the ability to interact with epithelial cells, an intermediate behavior between mucoadhesive and mucopenetrating NPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA