Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 577(7792): 647-651, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31988511

RESUMO

Most bulk-scale graphene is produced by a top-down approach, exfoliating graphite, which often requires large amounts of solvent with high-energy mixing, shearing, sonication or electrochemical treatment1-3. Although chemical oxidation of graphite to graphene oxide promotes exfoliation, it requires harsh oxidants and leaves the graphene with a defective perforated structure after the subsequent reduction step3,4. Bottom-up synthesis of high-quality graphene is often restricted to ultrasmall amounts if performed by chemical vapour deposition or advanced synthetic organic methods, or it provides a defect-ridden structure if carried out in bulk solution4-6. Here we show that flash Joule heating of inexpensive carbon sources-such as coal, petroleum coke, biochar, carbon black, discarded food, rubber tyres and mixed plastic waste-can afford gram-scale quantities of graphene in less than one second. The product, named flash graphene (FG) after the process used to produce it, shows turbostratic arrangement (that is, little order) between the stacked graphene layers. FG synthesis uses no furnace and no solvents or reactive gases. Yields depend on the carbon content of the source; when using a high-carbon source, such as carbon black, anthracitic coal or calcined coke, yields can range from 80 to 90 per cent with carbon purity greater than 99 per cent. No purification steps are necessary. Raman spectroscopy analysis shows a low-intensity or absent D band for FG, indicating that FG has among the lowest defect concentrations reported so far for graphene, and confirms the turbostratic stacking of FG, which is clearly distinguished from turbostratic graphite. The disordered orientation of FG layers facilitates its rapid exfoliation upon mixing during composite formation. The electric energy cost for FG synthesis is only about 7.2 kilojoules per gram, which could render FG suitable for use in bulk composites of plastic, metals, plywood, concrete and other building materials.

2.
J Am Chem Soc ; 146(13): 9318-9325, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38517068

RESUMO

Planar hexagonal boron nitride (h-BN) and tubular BN nanotube (BNNT), known for their superior mechanical and thermal properties, as well as wide electronic band gap, hold great potential for nanoelectronic and optoelectronic devices. Chemical vapor deposition has demonstrated the best way to scalable synthesis of high-quality BN nanomaterials. Yet, the atomistic understanding of reactions from precursors to product-material remains elusive, posing challenges for experimental design. Here, performing first-principles calculations and ab initio molecular simulations, we explore pyrolytic decomposition pathways of the most used precursor ammonia borane (H3BNH3, AB) to BN, in gas-phase and on Ni(111) or amorphous boron (for BNNT growth) surfaces, for comparison. It reveals that in the gas phase, a pair of AB molecules cooperate to form intermediate NH3 and ammonia diborane, which further dissociates into H2BNH2, accompanied by critical BH4- and NH4+ ions. These ions act as H scavengers facilitating H2BNH2 dehydrogenation into HBNH. The consequent HBNH directly feeds BN flake growth by reacting with the crystal edge, while the addition of H2BNH2 to the edge is prohibited at 1500 K. In contrast, on Ni and boron surfaces, AB monomer dehydrogenates stepwise, deeper, yielding BNH and BN dimer as the primary building unit. Our study maps out three typical experimental conditions regarding the dissociation of AB-precursor, providing insights into the underlying reaction mechanisms of gas-phase precursors, to help as guidelines for the experimental growth of BN nanomaterials.

3.
J Am Chem Soc ; 144(16): 7497-7503, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35427122

RESUMO

Two-dimensional transition metal dichalcogenides (TMD), such as molybdenum disulfide (MoS2), have aroused substantial research interest in recent years, motivating the quest for new synthetic strategies. Recently, halide salts have been reported to promote the chemical vapor deposition (CVD) growth of a wide range of TMD. Nevertheless, the underlying promoting mechanisms and reactions are largely unknown. Here, we employ first-principles calculations and ab initio molecular dynamics (AIMD) simulations in order to investigate the detailed molecular mechanisms during the salt-assisted CVD growth of MoS2 monolayers. The sulfurization of molybdenum oxyhalides MoO2X2 (X = F, Cl, Br, and I)─the form of Mo-feedstock dominating in salt-assisted synthesis─has been explored and displays much lower activation barriers than that of molybdenum oxide present during conventional "saltless" growth of MoS2. Furthermore, the rate-limiting barriers appear to depend linearly on the electronegativity of the halogen element, with oxyiodide having the lowest barrier. Our study reveals the promoting mechanisms of halides and allows growth parameter optimization to achieve even faster growth of MoS2 monolayers in the CVD synthesis.


Assuntos
Doenças Cardiovasculares , Elementos de Transição , Gases , Humanos , Molibdênio/química , Óxidos , Cloreto de Sódio , Elementos de Transição/química
4.
Small ; 16(38): e2002120, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32812375

RESUMO

A challenge in the synthesis of single-wall carbon nanotubes (SWCNTs) is the lack of control over the formation and evolution of catalyst nanoparticles and the lack of control over their size or chirality. Here, zeolite MFI nanosheets (MFI-Ns) are used to keep cobalt (Co) nanoparticles stable during prolonged annealing conditions. Environmental transmission electron microscopy (ETEM) shows that the MFI-Ns can influence the size and shape of nanoparticles via particle/support registry, which leads to the preferential docking of nanoparticles to four or fewer pores and to the regulation of the SWCNT synthesis products. The resulting SWCNT population exhibits a narrow diameter distribution and SWCNTs of nearly all chiral angles, including sub-nm zigzag (ZZ) and near-ZZ tubes. Theoretical simulations reveal that the growth of these unfavorable tubes from unsupported catalysts leads to the rapid encapsulation of catalyst nanoparticles bearing them; their presence in the growth products suggests that the MFI-Ns prevent nanoparticle encapsulation and prologue ZZ and near-ZZ SWCNT growth. These results thus present a path forward for controlling nanoparticle formation and evolution, for achieving size- and shape-selectivity at high temperature, and for controlling SWCNT synthesis.

5.
Nano Lett ; 19(3): 2027-2031, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30821468

RESUMO

Large 2D monocrystals are highly sought after yet hard to achieve; unlike graphene, most dichalcogenides and h-BN possess low symmetry, which allows for nucleation of mutually inverted pieces, merging into polycrystals replete with grain boundaries. On vicinal substrate surfaces such growing pieces were observed to orient alike, and very recently this effect apparently enabled the growth of large single crystal h-BN. Addressing the compelling questions of how such a growth process can operate and what the key mechanisms are is crucial in guiding the substrate selection for optimal synthesis of perhaps many materials. To this end, the basic crystallography and atomistic-modeling theory presented here reveal (i) how the undulations of the ever-wandering steps do not, surprisingly, disturb the orientations of the attached 2D-nuclei, whose direction remains robust owing to complementarity between the meandering step and h-BN counterpart if their kinks have similar size of negligible misfit, δ k < 0.1 Å. (ii) Stronger chemical affinity of metal to the N atoms at the zigzag edge of h-BN singles out its particular orientation, without evidence of any epitaxy, at the edge or to the surface. (iii) The monocrystal integrity requires unhindered growth spillover across the steps and the seamless healing of the residual fissures, caused by the very same steps necessary for co-orientation. Molecular dynamics simulations show this happening for the steps not taller than the BN bond, s < 1.44 Å. These criteria point to [-1 1 2] steps on the Cu (110) surface, in accord with experimental results (Wang et al. Towards the growth of single-crystal boron nitride monolayer on Cu. arXiv:1811.06688 Cond. Mat. Mtrl. Sci., 2018), while other possibilities can also be predicted.

6.
Nat Mater ; 17(4): 318-322, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29531368

RESUMO

There is a demand for the manufacture of two-dimensional (2D) materials with high-quality single crystals of large size. Usually, epitaxial growth is considered the method of choice 1 in preparing single-crystalline thin films, but it requires single-crystal substrates for deposition. Here we present a different approach and report the synthesis of single-crystal-like monolayer graphene films on polycrystalline substrates. The technological realization of the proposed method resembles the Czochralski process and is based on the evolutionary selection 2 approach, which is now realized in 2D geometry. The method relies on 'self-selection' of the fastest-growing domain orientation, which eventually overwhelms the slower-growing domains and yields a single-crystal continuous 2D film. Here we have used it to synthesize foot-long graphene films at rates up to 2.5 cm h-1 that possess the quality of a single crystal. We anticipate that the proposed approach could be readily adopted for the synthesis of other 2D materials and heterostructures.

7.
Nano Lett ; 18(8): 5288-5293, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29979600

RESUMO

Solid Co-W catalysts have been shown to yield single-walled carbon nanotubes (CNT) with high selectivity, simplistically attributed to CNT-catalyst symmetry match for certain chiral indices ( n, m). Here, based on large-scale first-principles calculations combined with kinetic Monte Carlo simulations, we show instead that such selectivity arises from a complex kinetics of growth. The solid Co7W6 catalyst strongly favors a restructured, asymmetric CNT edge which entails preferential nucleation of tubes with 2 m < n but much faster growth of chiral tubes with n ⩽ 2 m. We uncover a tendency of interface defects formation that, although rare, drive CNT type change from smaller to larger chiral angles (zigzag to armchair). Being both least prone to defects and fast growing, the (12,6) CNT appears as a transient, kinetics-selected type reaching highest abundance.

8.
J Phys Chem Lett ; 14(18): 4266-4272, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37126735

RESUMO

Hydrocarbon conversion to advanced carbon nanomaterials with concurrent hydrogen production holds promise for clean energy technologies. This has been largely enabled by the floating catalyst chemical vapor deposition (FCCVD) growth of carbon nanotubes (CNTs), where commonly catalytic iron nanoparticles are formed from ferrocene decomposition. However, the catalyst formation mechanism and the effect of the chemical environment, especially hydrogen, remain elusive. Here, by employing atomistic simulations, we demonstrate how (i) hydrogen accelerates the ferrocene decomposition and (ii) prevents catalyst encapsulation. A subsequent catalytic dehydrogenation of methane on a liquid Fe nanoparticle showed that carbon dimers tend to be the dominant on-surface species. Such atomistic insights help us better understand the catalyst formation and CNT nucleation in the early stages of the FCCVD growth process and optimize it for potential scaleup.

9.
Adv Mater ; 35(16): e2209621, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36694364

RESUMO

Graphitic 1D and hybrid nanomaterials represent a powerful solution in composite and electronic applications due to exceptional properties, but large-scale synthesis of hybrid materials has yet to be realized. Here, a rapid, scalable method to produce graphitic 1D materials from polymers using flash Joule heating (FJH) is reported. This avoids lengthy chemical vapor deposition and uses no solvent or water. The flash 1D materials (F1DM), synthesized using a variety of earth-abundant catalysts, have controllable diameters and morphologies by parameter tuning. Furthermore, the process can be modified to form hybrid materials, with F1DM bonded to turbostratic graphene. In nanocomposites, F1DM outperform commercially available carbon nanotubes. Compared to current 1D material synthetic strategies using life cycle assessment, FJH synthesis represents an 86-92% decrease in cumulative energy demand and 92-94% decrease in global-warming potential. This work suggests that FJH affords a cost-effective and sustainable route to upcycle waste plastic into valuable 1D and hybrid nanomaterials.

10.
Adv Mater ; 35(48): e2306763, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37694496

RESUMO

Hydrogen gas (H2 ) is the primary storable fuel for pollution-free energy production, with over 90 million tonnes used globally per year. More than 95% of H2 is synthesized through metal-catalyzed steam methane reforming that produces 11 tonnes of carbon dioxide (CO2 ) per tonne H2 . "Green H2 " from water electrolysis using renewable energy evolves no CO2 , but costs 2-3× more, making it presently economically unviable. Here catalyst-free conversion of waste plastic into clean H2 along with high purity graphene is reported. The scalable procedure evolves no CO2 when deconstructing polyolefins and produces H2 in purities up to 94% at high mass yields. The sale of graphene byproduct at just 5% of its current value yields H2 production at a negative cost. Life-cycle assessment demonstrates a 39-84% reduction in emissions compared to other H2 production methods, suggesting the flash H2 process to be an economically viable, clean H2 production route.

11.
Sci Adv ; 9(39): eadh5131, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37756404

RESUMO

The staggering accumulation of end-of-life lithium-ion batteries (LIBs) and the growing scarcity of battery metal sources have triggered an urgent call for an effective recycling strategy. However, it is challenging to reclaim these metals with both high efficiency and low environmental footprint. We use here a pulsed dc flash Joule heating (FJH) strategy that heats the black mass, the combined anode and cathode, to >2100 kelvin within seconds, leading to ~1000-fold increase in subsequent leaching kinetics. There are high recovery yields of all the battery metals, regardless of their chemistries, using even diluted acids like 0.01 M HCl, thereby lessening the secondary waste stream. The ultrafast high temperature achieves thermal decomposition of the passivated solid electrolyte interphase and valence state reduction of the hard-to-dissolve metal compounds while mitigating diffusional loss of volatile metals. Life cycle analysis versus present recycling methods shows that FJH significantly reduces the environmental footprint of spent LIB processing while turning it into an economically attractive process.

12.
Sci Adv ; 8(45): eadd4627, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36351010

RESUMO

Bringing to fruition the tantalizing properties, foreseen since the discovery of carbon nanotubes, has been hindered by the challenge to produce a desired helical symmetry type, single chirality. Despite progress in postsynthesis separation or somewhat sporadic success in selective growth, obtaining one chiral type at will remains elusive. The kinetics analysis here shows how a local yet moving reaction zone (the gas feedstock or elevated temperature) can entice the tubes to follow, so that, remotely akin to proverbial Lamarck giraffes, only the fastest survive. Reversing the reaction to dissolution would further eliminate the too fast-reactive types so that a desired chirality is singled out in production.

13.
ACS Nano ; 15(11): 18347-18353, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34766759

RESUMO

Borophene─a monatomic layer of boron atoms─stands out among two-dimensional (2D) materials, with its versatile properties tantalizing for physics exploration and next-generation devices. Yet its phases are all synthesized on and stay bound to metal substrates, hampering both characterization and use. Borophene growth on an inert insulator would allow postsynthesis exfoliation, but the weak adhesion to such a substrate results in a high 2D nucleation barrier, preventing clean borophene growth. This challenge can be circumvented in a strategy devised and demonstrated here with ab initio calculations. Naturally present 1D-defects, the step-edges on an h-BN substrate surface, enable boron epitaxial assembly, reduce the nucleation dimensionality, and lower the barrier by an order of magnitude (to 1.1 eV or less), yielding a v1/9 phase. Weak borophene adhesion to the insulator makes it readily accessible for comprehensive property tests or transfer into the device setting.

14.
ACS Nano ; 15(3): 4893-4900, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33630566

RESUMO

A large-scale chemical synthesis of graphene produces a polycrystalline material with grain boundaries (GBs) that disturb the lattice structure and drastically affect material properties. An uncontrollable formation of GB can be detrimental, yet precise GB engineering can impart added functionalities onto graphene-and its noncarbon two-dimensional "cousins." While the importance of growth kinetics in shaping single-crystalline graphene islands has lately been appreciated, kinetics' role in determining a GB structure remains unaddressed. Here we report on the analysis of the GB formation as captured by kinetic Monte Carlo simulations in contrast with global minimum guided GB structures considered previously. We identified a key parameter-edge misorientation angle-that describes the initial geometry of merging grains and unambiguously defines the resulting GB structure, while a commonly used lattice tilt angle corresponds to several qualitatively different GB structures. A provided systematic analysis of GB structures formed from a full range of edge misorientation angles reveals conditions that result in straight and periodic GBs as well as conditions responsible for meandering and disordered GBs. Additionally, we address the special case of translational GBs, where lattices of merging grains are aligned but shifted compared to each other. Collected data can be used for deliberate GB structural engineering, for example, by a three-dimensional patterning of the substrate surface to introduce disclinations creating a graphene lattice tilt.

15.
Sci Adv ; 7(50): eabk1892, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34890223

RESUMO

Transition metal dichalcogenides exhibit a variety of electronic behaviors depending on the number of layers and width. Therefore, developing facile methods for their controllable synthesis is of central importance. We found that nickel nanoparticles promote both heterogeneous nucleation of the first layer of molybdenum disulfide and simultaneously catalyzes homoepitaxial tip growth of a second layer via a vapor-liquid-solid (VLS) mechanism, resulting in bilayer nanoribbons with width controlled by the nanoparticle diameter. Simulations further confirm the VLS growth mechanism toward nanoribbons and its orders of magnitude higher growth speed compared to the conventional noncatalytic growth of flakes. Width-dependent Coulomb blockade oscillation observed in the transfer characteristics of the nanoribbons at temperatures up to 60 K evidences the value of this proposed synthesis strategy for future nanoelectronics.

16.
ACS Nano ; 15(1): 1282-1290, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33412009

RESUMO

Controllable phase engineering is vital for precisely tailoring material properties since different phase structures have various electronic states and atomic arrangements. Rapid synthesis of thermodynamically metastable materials, especially two-dimensional metastable materials, with high efficiency and low cost remains a large challenge. Here we report flash Joule heating (FJH) as an electrothermal method to achieve the bulk conversion of transition metal dichalcogenides, MoS2 and WS2, from 2H phases to 1T phases in milliseconds. The conversions can reach up to 76% of flash MoS2 using tungsten powder as conductive additive. Different degrees of phase conversion can be realized by controlling the FJH conditions, such as reaction duration and additives, which allows the study of ratio-dependent properties. First-principles calculations confirm that structural processes associated with the FJH, such as vacancy formation and charge accumulation, result in stabilization of the 1T phases. FJH offers rapid access to bulk quantities of the hitherto hard-to-access 1T phases, a promising method for further fundamental research and diverse applications of metastable phases.

17.
ACS Nano ; 14(10): 13691-13699, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-32909736

RESUMO

Flash Joule heating (FJH) can convert almost any carbon-based precursor into bulk quantities of graphene. This work explores the morphologies and properties of flash graphene (FG) generated from carbon black. It is shown that FG is partially comprised of sheets of turbostratic FG (tFG) that have a rotational mismatch between neighboring layers. The remainder of the FG is wrinkled graphene sheets that resemble nongraphitizing carbon. To generate high quality tFG sheets, a FJH duration of 30-100 ms is employed. Beyond 100 ms, the turbostratic sheets have time to AB-stack and form bulk graphite. Atomistic simulations reveal that generic thermal annealing yields predominantly wrinkled graphene which displays minimal to no alignment of graphitic planes, as opposed to the high-quality tFG that might be formed under the direct influence of current conducted through the material. The tFG was easily exfoliated via shear, hence the FJH process has the potential for bulk production of tFG without the need for pre-exfoliation using chemicals or high energy mechanical shear.

18.
ACS Nano ; 13(8): 8836-8841, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31323179

RESUMO

The contact between a carbon nanotube (CNT) edge and a catalyst is a curvilinear interface of fundamental and practical importance. Here, the first-principles evidence shows that on a rigid/solid catalyst the faceted CNT edge is significantly lower in energy compared to the minimal-length circle, with the interface energy difference decreasing on more compliant surfaces. This universal trend, found for typical monometallic (Ni, Co), bimetallic (Co7W6), and metal carbide (WC) catalysts, results in a peculiar edge segregation into one-dimensional Janus (armchair-zigzag) interface. Its lowered energy greatly enhances the nucleation probability of chiral tubes, dramatically affecting their growth kinetics. This offers a richer basis for understanding, modeling, and control of catalytic CNT synthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA