Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Bases de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(22): 226003, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37327429

RESUMO

At zero temperature, a Galilean-invariant Bose fluid is expected to be fully superfluid. Here we investigate theoretically and experimentally the quenching of the superfluid density of a dilute Bose-Einstein condensate due to the breaking of translational (and thus Galilean) invariance by an external 1D periodic potential. Both Leggett's bound fixed by the knowledge of the total density and the anisotropy of the sound velocity provide a consistent determination of the superfluid fraction. The use of a large-period lattice emphasizes the important role of two-body interactions on superfluidity.


Assuntos
Anisotropia , Temperatura
2.
Phys Rev Lett ; 127(2): 023603, 2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34296923

RESUMO

Most experimental observations of solitons are limited to one-dimensional (1D) situations, where they are naturally stable. For instance, in 1D cold Bose gases, they exist for any attractive interaction strength g and particle number N. By contrast, in two dimensions, solitons appear only for discrete values of gN, the so-called Townes soliton being the most celebrated example. Here, we use a two-component Bose gas to prepare deterministically such a soliton: Starting from a uniform bath of atoms in a given internal state, we imprint the soliton wave function using an optical transfer to another state. We explore various interaction strengths, atom numbers, and sizes and confirm the existence of a solitonic behavior for a specific value of gN and arbitrary sizes, a hallmark of scale invariance.

3.
Phys Rev Lett ; 125(23): 233604, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33337228

RESUMO

In atomic systems, clock states feature a zero projection of the total angular momentum and thus a low sensitivity to magnetic fields. This makes them widely used for metrological applications like atomic fountains or gravimeters. Here, we show that a mixture of two such nonmagnetic states still displays magnetic dipole-dipole interactions comparable to the one expected for the other Zeeman states of the same atomic species. Using high-resolution spectroscopy of a planar gas of ^{87}Rb atoms with a controlled in plane shape, we explore the effective isotropic and extensive character of these interactions and demonstrate their tunability. Our measurements set strong constraints on the relative values of the s-wave scattering lengths a_{ij} involving the two clock states.

4.
Phys Rev Lett ; 121(14): 145301, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30339451

RESUMO

In superfluid systems several sound modes can be excited, such as, for example, first and second sound in liquid helium. Here, we excite running and standing waves in a uniform two-dimensional Bose gas and we characterize the propagation of sound in both the superfluid and normal regimes. In the superfluid phase, the measured speed of sound is in good agreement with the prediction of a two-fluid hydrodynamic model, and the weak damping is well explained by the scattering with thermal excitations. In the normal phase we observe a stronger damping, which we attribute to a departure from hydrodynamic behavior.

5.
Phys Rev Lett ; 119(19): 190403, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29219502

RESUMO

Controlled quantum systems such as ultracold atoms can provide powerful platforms to study nonequilibrium dynamics of closed many-body quantum systems, especially since a complete theoretical description is generally challenging. In this Letter, we present a detailed study of the rich out-of-equilibrium dynamics of an adjustable number N of uncorrelated condensates after connecting them in a ring-shaped optical trap. We observe the formation of long-lived supercurrents and confirm the scaling of their winding number with N in agreement with the geodesic rule. Moreover, we provide insight into the microscopic mechanism that underlies the smoothening of the phase profile.

6.
Phys Rev Lett ; 119(21): 215304, 2017 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-29219404

RESUMO

Topological properties of crystals and quasicrystals is a subject of recent and growing interest. This Letter reports an experiment where, for certain quasicrystals, these properties can be directly retrieved from diffraction. We directly observe, using an interferometric approach, all of the topological invariants of finite-length Fibonacci chains in their diffraction pattern. We also quantitatively demonstrate the stability of these topological invariants with respect to structural disorder.

7.
Phys Rev Lett ; 113(13): 135302, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25302899

RESUMO

We create supercurrents in annular two-dimensional Bose gases through a temperature quench of the normal-to-superfluid phase transition. We detect the magnitude and the direction of these supercurrents by measuring spiral patterns resulting from the interference of the cloud with a central reference disk. These measurements demonstrate the stochastic nature of the supercurrents. We further measure their distribution for different quench times and compare it with predictions based on the Kibble-Zurek mechanism.

8.
Nature ; 440(7085): 779-82, 2006 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-16598253

RESUMO

When two indistinguishable single photons are fed into the two input ports of a beam splitter, the photons will coalesce and leave together from the same output port. This is a quantum interference effect, which occurs because two possible paths-in which the photons leave by different output ports-interfere destructively. This effect was first observed in parametric downconversion (in which a nonlinear crystal splits a single photon into two photons of lower energy), then from two separate downconversion crystals, as well as with single photons produced one after the other by the same quantum emitter. With the recent developments in quantum information research, much attention has been devoted to this interference effect as a resource for quantum data processing using linear optics techniques. To ensure the scalability of schemes based on these ideas, it is crucial that indistinguishable photons are emitted by a collection of synchronized, but otherwise independent sources. Here we demonstrate the quantum interference of two single photons emitted by two independently trapped single atoms, bridging the gap towards the simultaneous emission of many indistinguishable single photons by different emitters. Our data analysis shows that the observed coalescence is mainly limited by wavefront matching of the light emitted by the two atoms, and to a lesser extent by the motion of each atom in its own trap.

9.
Nat Commun ; 12(1): 760, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536418

RESUMO

Tan's contact is a quantity that unifies many different properties of a low-temperature gas with short-range interactions, from its momentum distribution to its spatial two-body correlation function. Here, we use a Ramsey interferometric method to realize experimentally the thermodynamic definition of the two-body contact, i.e., the change of the internal energy in a small modification of the scattering length. Our measurements are performed on a uniform two-dimensional Bose gas of 87Rb atoms across the Berezinskii-Kosterlitz-Thouless superfluid transition. They connect well to the theoretical predictions in the limiting cases of a strongly degenerate fluid and of a normal gas. They also provide the variation of this key quantity in the critical region, where further theoretical efforts are needed to account for our findings.

10.
Science ; 309(5733): 454-6, 2005 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16020731

RESUMO

By illuminating an individual rubidium atom stored in a tight optical tweezer with short resonant light pulses, we created an efficient triggered source of single photons with a well-defined polarization. The measured intensity correlation of the emitted light pulses exhibits almost perfect antibunching. Such a source of high-rate, fully controlled single-photon pulses has many potential applications for quantum information processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA