Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Lancet ; 385(9975): 1305-14, 2015 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-25529582

RESUMO

BACKGROUND: Human genome sequencing has transformed our understanding of genomic variation and its relevance to health and disease, and is now starting to enter clinical practice for the diagnosis of rare diseases. The question of whether and how some categories of genomic findings should be shared with individual research participants is currently a topic of international debate, and development of robust analytical workflows to identify and communicate clinically relevant variants is paramount. METHODS: The Deciphering Developmental Disorders (DDD) study has developed a UK-wide patient recruitment network involving over 180 clinicians across all 24 regional genetics services, and has performed genome-wide microarray and whole exome sequencing on children with undiagnosed developmental disorders and their parents. After data analysis, pertinent genomic variants were returned to individual research participants via their local clinical genetics team. FINDINGS: Around 80,000 genomic variants were identified from exome sequencing and microarray analysis in each individual, of which on average 400 were rare and predicted to be protein altering. By focusing only on de novo and segregating variants in known developmental disorder genes, we achieved a diagnostic yield of 27% among 1133 previously investigated yet undiagnosed children with developmental disorders, whilst minimising incidental findings. In families with developmentally normal parents, whole exome sequencing of the child and both parents resulted in a 10-fold reduction in the number of potential causal variants that needed clinical evaluation compared to sequencing only the child. Most diagnostic variants identified in known genes were novel and not present in current databases of known disease variation. INTERPRETATION: Implementation of a robust translational genomics workflow is achievable within a large-scale rare disease research study to allow feedback of potentially diagnostic findings to clinicians and research participants. Systematic recording of relevant clinical data, curation of a gene-phenotype knowledge base, and development of clinical decision support software are needed in addition to automated exclusion of almost all variants, which is crucial for scalable prioritisation and review of possible diagnostic variants. However, the resource requirements of development and maintenance of a clinical reporting system within a research setting are substantial. FUNDING: Health Innovation Challenge Fund, a parallel funding partnership between the Wellcome Trust and the UK Department of Health.


Assuntos
Deficiências do Desenvolvimento/diagnóstico , Genoma Humano/genética , Adolescente , Criança , Pré-Escolar , Deficiências do Desenvolvimento/genética , Feminino , Variação Genética/genética , Estudo de Associação Genômica Ampla/métodos , Heterozigoto , Humanos , Achados Incidentais , Lactente , Recém-Nascido , Disseminação de Informação , Masculino , Fenótipo , Manejo de Espécimes
2.
Nucleic Acids Res ; 42(Database issue): D993-D1000, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24150940

RESUMO

The DECIPHER database (https://decipher.sanger.ac.uk/) is an accessible online repository of genetic variation with associated phenotypes that facilitates the identification and interpretation of pathogenic genetic variation in patients with rare disorders. Contributing to DECIPHER is an international consortium of >200 academic clinical centres of genetic medicine and ≥1600 clinical geneticists and diagnostic laboratory scientists. Information integrated from a variety of bioinformatics resources, coupled with visualization tools, provides a comprehensive set of tools to identify other patients with similar genotype-phenotype characteristics and highlights potentially pathogenic genes. In a significant development, we have extended DECIPHER from a database of just copy-number variants to allow upload, annotation and analysis of sequence variants such as single nucleotide variants (SNVs) and InDels. Other notable developments in DECIPHER include a purpose-built, customizable and interactive genome browser to aid combined visualization and interpretation of sequence and copy-number variation against informative datasets of pathogenic and population variation. We have also introduced several new features to our deposition and analysis interface. This article provides an update to the DECIPHER database, an earlier instance of which has been described elsewhere [Swaminathan et al. (2012) DECIPHER: web-based, community resource for clinical interpretation of rare variants in developmental disorders. Hum. Mol. Genet., 21, R37-R44].


Assuntos
Variações do Número de Cópias de DNA , Bases de Dados de Ácidos Nucleicos , Genótipo , Fenótipo , Genoma Humano , Humanos , Internet , Doenças Raras/genética
3.
Hum Mol Genet ; 21(R1): R37-44, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22962312

RESUMO

Patients with developmental disorders often harbour sub-microscopic deletions or duplications that lead to a disruption of normal gene expression or perturbation in the copy number of dosage-sensitive genes. Clinical interpretation for such patients in isolation is hindered by the rarity and novelty of such disorders. The DECIPHER project (https://decipher.sanger.ac.uk) was established in 2004 as an accessible online repository of genomic and associated phenotypic data with the primary goal of aiding the clinical interpretation of rare copy-number variants (CNVs). DECIPHER integrates information from a variety of bioinformatics resources and uses visualization tools to identify potential disease genes within a CNV. A two-tier access system permits clinicians and clinical scientists to maintain confidential linked anonymous records of phenotypes and CNVs for their patients that, with informed consent, can subsequently be shared with the wider clinical genetics and research communities. Advances in next-generation sequencing technologies are making it practical and affordable to sequence the whole exome/genome of patients who display features suggestive of a genetic disorder. This approach enables the identification of smaller intragenic mutations including single-nucleotide variants that are not accessible even with high-resolution genomic array analysis. This article briefly summarizes the current status and achievements of the DECIPHER project and looks ahead to the opportunities and challenges of jointly analysing structural and sequence variation in the human genome.


Assuntos
Variações do Número de Cópias de DNA , Bases de Dados de Ácidos Nucleicos , Deficiências do Desenvolvimento/genética , Doenças Genéticas Inatas/genética , Internet , Biologia Computacional , Predisposição Genética para Doença , Variação Genética , Genoma Humano , Humanos , Disseminação de Informação , Mutação , Fenótipo , Polimorfismo de Nucleotídeo Único
4.
Am J Hum Genet ; 84(4): 524-33, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19344873

RESUMO

Many patients suffering from developmental disorders harbor submicroscopic deletions or duplications that, by affecting the copy number of dosage-sensitive genes or disrupting normal gene expression, lead to disease. However, many aberrations are novel or extremely rare, making clinical interpretation problematic and genotype-phenotype correlations uncertain. Identification of patients sharing a genomic rearrangement and having phenotypic features in common leads to greater certainty in the pathogenic nature of the rearrangement and enables new syndromes to be defined. To facilitate the analysis of these rare events, we have developed an interactive web-based database called DECIPHER (Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources) which incorporates a suite of tools designed to aid the interpretation of submicroscopic chromosomal imbalance, inversions, and translocations. DECIPHER catalogs common copy-number changes in normal populations and thus, by exclusion, enables changes that are novel and potentially pathogenic to be identified. DECIPHER enhances genetic counseling by retrieving relevant information from a variety of bioinformatics resources. Known and predicted genes within an aberration are listed in the DECIPHER patient report, and genes of recognized clinical importance are highlighted and prioritized. DECIPHER enables clinical scientists worldwide to maintain records of phenotype and chromosome rearrangement for their patients and, with informed consent, share this information with the wider clinical research community through display in the genome browser Ensembl. By sharing cases worldwide, clusters of rare cases having phenotype and structural rearrangement in common can be identified, leading to the delineation of new syndromes and furthering understanding of gene function.


Assuntos
Aberrações Cromossômicas , Bases de Dados Genéticas , Adulto , Criança , Pré-Escolar , Hibridização Genômica Comparativa , Biologia Computacional , Feminino , Dosagem de Genes , Genes Dominantes , Genoma Humano , Humanos , Internet , Masculino , Fenótipo , Síndrome
5.
J Am Soc Nephrol ; 11(5): 814-827, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-10770959

RESUMO

Mutations in the PKD1 and PKD2 genes account for 85 and 15% of cases of autosomal dominant polycystic kidney disease, respectively. Polycystin-2, the product of the PKD2 gene, is predicted to be an integral membrane protein with homology to a family of voltage-activated Ca(2+) channels. In vitro studies suggest that it may interact with polycystin-1, the PKD1 gene product, via coiled-coil domains present in their C-terminal domains. In this study, the cellular and subcellular distribution of polycystin-2 is defined and compared with polycystin-1. A panel of rabbit polyclonal antisera was raised against polycystin-2 and shown to recognize a single band consistent with polycystin-2 in multiple tissues and cell lines by immunoprecipitation and Western blotting. Immunostaining of human and murine renal tissues demonstrated widespread and developmentally regulated expression of polycytin-2, with highest levels in the kidney in the thick ascending limbs of the loop of Henle and the distal convoluted tubule. In contrast, polycystin-1 expression, while localizing to the same tubular segments, was highest in the collecting ducts. Immunohistochemical staining and immunofluorescence microscopy localized polycystin-2 to the basolateral plasma membrane of kidney tubular epithelial cells compared with the junctional localization of polycystin-1. Differences in the developmental, cellular, and subcellular expression of polycystin-1 and polycystin-2 suggest that they may be able to function independently of each other in addition to a potential in vivo interaction via their C-termini.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Rim/metabolismo , Proteínas de Membrana/metabolismo , Rim Policístico Autossômico Dominante/metabolismo , Animais , Anticorpos/imunologia , Western Blotting , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/imunologia , Linhagem Celular , Feto/metabolismo , Humanos , Rim/citologia , Proteínas de Membrana/química , Proteínas de Membrana/imunologia , Camundongos , Microscopia Confocal , Microscopia de Fluorescência , Testes de Precipitina , Proteínas/química , Proteínas/imunologia , Proteínas/metabolismo , Coelhos , Canais de Cátion TRPP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA