Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(56): 118976-118988, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37922087

RESUMO

The COVID-19 pandemic has emphasized the urgency for rapid public health surveillance methods to detect and monitor the transmission of infectious diseases. The wastewater-based epidemiology (WBE) has emerged as a promising tool for proactive analysis and quantification of infectious pathogens within a population before clinical cases emerge. In the present study, we aimed to assess the trend and dynamics of SARS-CoV-2 variants using a longitudinal approach. Our objective included early detection and monitoring of these variants to enhance our understanding of their prevalence and potential impact. To achieve our goals, we conducted real-time quantitative polymerase chain reaction (RT-qPCR) and Illumina sequencing on 442 wastewater (WW) samples collected from 10 sewage treatment plants (STPs) in Pune city, India, spanning from November 2021 to April 2022. Our comprehensive analysis identified 426 distinct lineages representing 17 highly transmissible variants of SARS-CoV-2. Notably, fragments of Omicron variant were detected in WW samples prior to its first clinical detection in Botswana. Furthermore, we observed highly contagious sub-lineages of the Omicron variant, including BA.1 (~28%), BA.1.X (1.0-72%), BA.2 (1.0-18%), BA.2.X (1.0-97.4%) BA.2.12 (0.8-0.25%), BA.2.38 (0.8-1.0%), BA.2.75 (0.01-0.02%), BA.3 (0.09-6.3%), BA.4 (0.24-0.29%), and XBB (0.01-21.83%), with varying prevalence rates. Overall, the present study demonstrated the practicality of WBE in the early detection of SARS-CoV-2 variants, which could help track future outbreaks of SARS-CoV-2. Such approaches could be implicated in monitoring infectious agents before they appear in clinical cases.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias , COVID-19/epidemiologia , Índia , Genômica , Águas Residuárias
2.
J Infect Public Health ; 16(8): 1290-1300, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37331277

RESUMO

BACKGROUND: Modern response to pandemics, critical for effective public health measures, is shaped by the availability and integration of diverse epidemiological outbreak data. Tracking variants of concern (VOC) is integral to understanding the evolution of SARS-CoV-2 in space and time, both at the local level and global context. This potentially generates actionable information when integrated with epidemiological outbreak data. METHODS: A city-wide network of researchers, clinicians, and pathology diagnostic laboratories was formed for genome surveillance of COVID-19 in Pune, India. The genomic landscapes of 10,496 sequenced samples of SARS-CoV-2 driving peaks of infection in Pune between December-2020 to March-2022, were determined. As a modern response to the pandemic, a "band of five" outbreak data analytics approach was used. This integrated the genomic data (Band 1) of the virus through molecular phylogenetics with key outbreak data including sample collection dates and case numbers (Band 2), demographics like age and gender (Band 3-4), and geospatial mapping (Band 5). RESULTS: The transmission dynamics of VOCs in 10,496 sequenced samples identified B.1.617.2 (Delta) and BA(x) (Omicron formerly known as B.1.1.529) variants as drivers of the second and third peaks of infection in Pune. Spike Protein mutational profiling during pre and post-Omicron VOCs indicated differential rank ordering of high-frequency mutations in specific domains that increased the charge and binding properties of the protein. Time-resolved phylogenetic analysis of Omicron sub-lineages identified a highly divergent BA.1 from Pune in addition to recombinant X lineages, XZ, XQ, and XM. CONCLUSIONS: The band of five outbreak data analytics approach, which integrates five different types of data, highlights the importance of a strong surveillance system with high-quality meta-data for understanding the spatiotemporal evolution of the SARS-CoV-2 genome in Pune. These findings have important implications for pandemic preparedness and could be critical tools for understanding and responding to future outbreaks.


Assuntos
COVID-19 , Pandemias , Humanos , COVID-19/epidemiologia , SARS-CoV-2/genética , Filogenia , Índia/epidemiologia , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA