Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 22(3): 100, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33709236

RESUMO

Intravitreal (IVT) administration of therapeutics is the standard of care for treatment of back-of-eye disorders. Although a common procedure performed by retinal specialists, IVT administration is associated with unique challenges related to drug product, device and the procedure, which may result in adverse events. Container closure configuration plays a crucial role in maintaining product stability, safety, and efficacy for the intended shelf-life. Careful design of primary container configuration is also important to accurately deliver small volumes (10-100 µL). Over- or under-dosing may lead to undesired adverse events or lack of efficacy resulting in unpredictable and variable clinical responses. IVT drug products have been traditionally presented in glass vials. However, pre-filled syringes offer a more convenient administration option by reducing the number of steps required for dose preparation there by potentially reducing the time demand on the healthcare providers. In addition to primary container selection, product development studies should focus on, among other things, primary container component characterization, material compatibility with the formulation, formulation stability, fill volume determination, extractables/leachables, and terminal sterilization. Ancillary components such as disposable syringes and needles must be carefully selected, and a detailed administration procedure that includes dosing instructions is required to ensure successful administration of the product. Despite significant efforts in improving the drug product and administration procedures, ocular safety concerns such as endophthalmitis, increased intraocular pressure, and presence of silicone floaters have been reported. A systematic review of available literature on container closure and devices for IVT administration can help guide successful product development.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Embalagem de Medicamentos/métodos , Injeções Intravítreas/métodos , Seringas , Humanos , Agulhas , Preparações Farmacêuticas/administração & dosagem , Esterilização
2.
Eur J Pharm Biopharm ; 185: 116-125, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36581056

RESUMO

Silicone tubing is used in various unit operations during drug product (DP) manufacturing. Hold of protein formulations in silicone tubing over time may have an impact on product quality, particularly protein concentration. This study evaluated the change in protein concentration of a test monoclonal antibody (mAb) formulation over various hold times in silicone tubing as a function of tubing internal diameter (ID) and wall thickness. It was hypothesized that the rate of water diffusion through the semi-permeable membrane is a function of the tubing ID and wall thickness. The weight and protein concentration of various formulation-filled tubings over time was measured. The weight of water lost varied linearly with the change in protein concentration. It was observed to be independent of mAb type, formulation composition, and initial protein concentration for a given tubing ID and wall thickness. The effect of formulation water activity on the water loss rate was investigated. A mechanistic diffusion-based model was developed that predicts the change in tubing weight and therefore protein concentration over various hold times for a given formulation and tubing. Overall, this study suggests that water loss from silicone tubing affects protein concentration and should be monitored during DP process development and manufacturing.


Assuntos
Silicones , Água , Proteínas
3.
J Pharm Sci ; 112(12): 2991-3004, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37751805

RESUMO

The aseptic filling of drug products is carried out in pharmaceutical isolators that have been sterilized. A commonly used method for achieving a high level of sterility assurance is vaporized hydrogen peroxide (VHP) sterilization, which is favorable to other methods, such as ethylene oxide sterilization, due to its low cycle times and nontoxic residuals. While VHP cycles are often employed to create a sterile environment within an isolator, they can leave residual levels of hydrogen peroxide behind that can enter the product during fill-finish operations. Due to the oxidizing potential of hydrogen peroxide and the multiple possible sources of uptake along filling lines, the extent of the potential impact on product quality needs to be understood during pharmaceutical development. Herein, different factors affecting hydrogen peroxide uptake, points of entry along the filling line, and possible impacts on product quality are reviewed.


Assuntos
Peróxido de Hidrogênio , Esterilização , Esterilização/métodos
4.
Mol Pharm ; 9(4): 744-51, 2012 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-22221144

RESUMO

Monoclonal antibodies display highly variable solution properties such as solubility and viscosity at elevated concentrations (>50 mg/mL), which complicates antibody formulation and delivery. To understand this complex behavior, it is critical to measure the underlying protein self-interactions that govern the solution properties of antibody suspensions. We have evaluated the pH-dependent self-association behavior of three monoclonal antibodies using self-interaction chromatography for a range of pH values commonly used in antibody formulations (pH 4.4-6). At low ionic strength (<25 mM), we find that each antibody is more associative at near-neutral pH (pH 6) than at low pH (pH 4.4). At high ionic strength (>100 mM), we observe the opposite pH-dependent pattern of antibody self-association. Importantly, this inversion in self-association behavior is not unique to multidomain antibodies, as similar pH-dependent behavior is observed for some small globular proteins (e.g., ribonuclease A and α-chymotrypsinogen). We also find that the opalescence of concentrated antibody solutions (90 mg/mL) is minimized at low ionic strength at pH 4.4 and high ionic strength at pH 6, in agreement with the self-interaction measurements conducted at low antibody concentrations (5 mg/mL). Our results highlight the complexity of antibody self-association and emphasize the need for systematic approaches to optimize the solution properties of concentrated antibody formulations.


Assuntos
Anticorpos Monoclonais/química , Concentração Osmolar , Concentração de Íons de Hidrogênio , Viscosidade
5.
J Control Release ; 196: 261-71, 2014 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25450402

RESUMO

Numerous hormones are known to be endogenously secreted in a pulsatile manner. In particular, gonadotropin replacing hormone (GnRH) is released in rhythmic pulses, and disruption of this rhythm is associated with pathologies of reproduction and sexual development. In an effort to develop an implantable, rhythmic delivery system, a scheme has been demonstrated involving a negative feedback instability between a pH-sensitive membrane and enzymes that convert endogenous glucose to hydrogen ion. A bench prototype system based on this scheme was previously shown to produce near rhythmic oscillations in internal pH and in GnRH delivery over a period of one week. In the present work, a systematic study of conditions permitting such oscillations is presented, along with a study of factors causing period of oscillations to increase with time and ultimately cease. Membrane composition, glucose concentration, and surface area of marble (CaCO3), which is incorporated as a reactant, were found to affect the capacity of the system to oscillate, and the pH range over which oscillations occur. Accumulation of gluconate- and Ca2+ in the system over time correlated with lengthening of oscillation period, and possibly with cessation of oscillations. Enzyme degradation may also be a factor. These studies provide the groundwork for future improvements in device design.


Assuntos
Enzimas/química , Hormônios/administração & dosagem , Hidrogéis/química , Soluções Tampão , Cálcio/química , Carbonato de Cálcio/química , Sistemas de Liberação de Medicamentos , Glucose/análise , Glucose/metabolismo , Hormônio Liberador de Gonadotropina/administração & dosagem , Hormônio Liberador de Gonadotropina/farmacocinética , Concentração de Íons de Hidrogênio , Membranas Artificiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA