Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Nature ; 632(8023): 55-62, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39085539

RESUMO

Advancements in optical coherence control1-5 have unlocked many cutting-edge applications, including long-haul communication, light detection and ranging (LiDAR) and optical coherence tomography6-8. Prevailing wisdom suggests that using more coherent light sources leads to enhanced system performance and device functionalities9-11. Our study introduces a photonic convolutional processing system that takes advantage of partially coherent light to boost computing parallelism without substantially sacrificing accuracy, potentially enabling larger-size photonic tensor cores. The reduction of the degree of coherence optimizes bandwidth use in the photonic convolutional processing system. This breakthrough challenges the traditional belief that coherence is essential or even advantageous in integrated photonic accelerators, thereby enabling the use of light sources with less rigorous feedback control and thermal-management requirements for high-throughput photonic computing. Here we demonstrate such a system in two photonic platforms for computing applications: a photonic tensor core using phase-change-material photonic memories that delivers parallel convolution operations to classify the gaits of ten patients with Parkinson's disease with 92.2% accuracy (92.7% theoretically) and a silicon photonic tensor core with embedded electro-absorption modulators (EAMs) to facilitate 0.108 tera operations per second (TOPS) convolutional processing for classifying the Modified National Institute of Standards and Technology (MNIST) handwritten digits dataset with 92.4% accuracy (95.0% theoretically).


Assuntos
Redes Neurais de Computação , Óptica e Fotônica , Fótons , Tomografia de Coerência Óptica , Humanos , Óptica e Fotônica/instrumentação , Óptica e Fotônica/métodos , Doença de Parkinson/diagnóstico , Doença de Parkinson/fisiopatologia , Silício/química , Tomografia de Coerência Óptica/instrumentação , Tomografia de Coerência Óptica/métodos , Marcha/fisiologia , Conjuntos de Dados como Assunto , Sensibilidade e Especificidade
2.
Nano Lett ; 24(35): 10813-10819, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39164007

RESUMO

An on-chip asymmetric directional coupler (DC) can convert fundamental modes to higher-order modes and is one of the core components of mode-division multiplexing (MDM) technology. In this study, we propose that waveguides of the asymmetric DC can be trimmed by silicon ion implantation to tune the effective refractive index and facilitate mode conversion into higher-order modes. Through this method of tuning, transmission changes of up to 18 dB have been realized with one ion implantation step. In addition, adjusting the position of the ion implantation on the waveguide can provide a further degree of control over the transmission into the resulting mode. The results of this work present a promising new route for the development of high-efficiency, low-loss mode converters for integrated photonic platforms, and aim to facilitate the application of MDM technology in emerging photonic neuromorphic computing.

3.
Nano Lett ; 23(11): 4800-4806, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37195243

RESUMO

Integrated photonic circuits (PICs) have seen an explosion in interest, through to commercialization in the past decade. Most PICs rely on sharp resonances to modulate, steer, and multiplex signals. However, the spectral characteristics of high-quality resonances are highly sensitive to small variations in fabrication and material constants, which limits their applicability. Active tuning mechanisms are commonly employed to account for such deviations, consuming energy and occupying valuable chip real estate. Readily employable, accurate, and highly scalable mechanisms to tailor the modal properties of photonic integrated circuits are urgently required. Here, we present an elegant and powerful solution to achieve this in a scalable manner during the semiconductor fabrication process using existing lithography tools: by exploiting the volume shrinkage exhibited by certain polymers to permanently modulate the waveguide's effective index. This technique enables broadband and lossless tuning with immediate applicability in wide-ranging applications in optical computing, telecommunications, and free-space optics.

4.
Nano Lett ; 22(9): 3532-3538, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35451845

RESUMO

The use of nonlinear elements with memory as photonic computing components has seen a huge surge in interest in recent years with the rise of artificial intelligence and machine learning. A key component is the nonlinear element itself. A class of materials known as phase change materials has been extensively used to demonstrate the viability of such computing. However, such materials continue to have relatively slow switching speeds, and issues with cyclability related to phase segregation of phase change alloys. Here, using antimony (Sb) thin films with thicknesses less than 5 nm we demonstrate reversible, ultrafast switching on an integrated photonic platform with retention time of tens of seconds. We use subpicosecond pulses, the shortest used to switch such elements, to program seven distinct memory levels. This portends their use in ultrafast nanophotonic applications ranging from nanophotonic beam steerers to nanoscale integrated elements for photonic computing.


Assuntos
Antimônio , Inteligência Artificial , Ligas , Óptica e Fotônica , Fótons
5.
Small ; 18(38): e2201968, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35938750

RESUMO

With the introduction of techniques to grow highly functional nanowires of exotic materials and demonstrations of their potential in new applications, techniques for depositing nanowires on functional platforms have been an area of active interest. However, difficulties in handling individual nanowires with high accuracy and reliability have so far been a limiting factor in large-scale integration of high-quality nanowires. Here, a technique is demonstrated to transfer single nanowires reliably on virtually any platform, under ambient conditions. Functional nanowires of InP, AlGaAs, and GeTe on various patterned structures such as electrodes, nanophotonic devices, and even ultrathin transmission electron microscopy (TEM) membranes are transferred. It is shown that the versatility of this technique further enables to perform on-chip nano-optomechanical measurements of an InP nanowire for the first time via evanescent field coupling. Thus, this technique facilitates effortless integration of single nanowires into applications that were previously seen as cumbersome or even impractical, spanning a wide range from TEM studies to in situ electrical, optical, and mechanical characterization.


Assuntos
Nanofios , Eletrodos , Microscopia Eletrônica de Transmissão , Nanofios/química , Reprodutibilidade dos Testes
6.
Nano Lett ; 21(9): 3827-3834, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33886314

RESUMO

Sustainability has become a critical concern in the semiconductor industry as hazardous wastes released during the manufacturing process of semiconductor devices have an adverse impact on human beings and the environment. The use of hazardous solvents in existing fabrication processes also restricts the use of polymer substrates because of their low chemical resistance to such solvents. Here, we demonstrate an environmentally friendly mechanical, bilayer lithography that uses just water for development and lift-off. We show that we are able to create arbitrary patterns achieving resolution down to 310 nm. We then demonstrate the use of this technique to create functional devices by fabricating a MoS2 photodetector on a polyethylene terephthalate (PET) substrate with measured response times down to 42 ms.


Assuntos
Impressão , Água , Humanos , Polímeros , Semicondutores
7.
Nanotechnology ; 32(1): 012002, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32679577

RESUMO

Recent progress in artificial intelligence is largely attributed to the rapid development of machine learning, especially in the algorithm and neural network models. However, it is the performance of the hardware, in particular the energy efficiency of a computing system that sets the fundamental limit of the capability of machine learning. Data-centric computing requires a revolution in hardware systems, since traditional digital computers based on transistors and the von Neumann architecture were not purposely designed for neuromorphic computing. A hardware platform based on emerging devices and new architecture is the hope for future computing with dramatically improved throughput and energy efficiency. Building such a system, nevertheless, faces a number of challenges, ranging from materials selection, device optimization, circuit fabrication and system integration, to name a few. The aim of this Roadmap is to present a snapshot of emerging hardware technologies that are potentially beneficial for machine learning, providing the Nanotechnology readers with a perspective of challenges and opportunities in this burgeoning field.

8.
Nano Lett ; 20(2): 1067-1073, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31904977

RESUMO

Confining electric fields to a nanoscale region is challenging yet crucial for applications such as high-resolution probing of electrical properties of materials and electric-field manipulation of nanoparticles. State-of-the-art techniques involving atomic force microscopy typically have a lateral resolution limit of tens of nanometers due to limitations in the probe geometry and stray electric fields that extend over space. Engineering the probes is the most direct approach to improving this resolution limit. However, current methods to fabricate high-resolution probes, which can effectively confine the electric fields laterally, involve expensive and sophisticated probe manipulation, which has limited the use of this approach. Here, we demonstrate that nanoscale phase switching of configurable thin films on probes can result in high-resolution electrical probes. These configurable coatings can be both germanium-antimony-tellurium (GST) as well as amorphous-carbon, materials known to undergo electric field-induced nonvolatile, yet reversible switching. By forming a localized conductive filament through phase transition, we demonstrate a spatial resolution of electrical field beyond the geometrical limitations of commercial platinum probes (i.e., an improvement of ∼48%). We then utilize these confined electric fields to manipulate nanoparticles with single nanoparticle precision via dielectrophoresis. Our results advance the field of nanomanufacturing and metrology with direct applications for pick and place assembly at the nanoscale.

9.
Opt Express ; 28(26): 39841-39849, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33379525

RESUMO

Structural color filters (i.e. plasmonics and nano-cavities) provide vivid and robust color filtering in applications such as CMOS image sensors but lack simplicity in fabrication and dynamic tuning. Here we report a dynamically tunable, transmissive color filter by incorporating an ultra-thin phase change layer inside a thin-film optical resonator. The transmitted color spectrum can be designed over the entire visible range and shifted by around 50 nm after phase transition. Angle dependence shows little color variation within a ±30° viewing angle. Crucially, only film deposition is required to fabricate our phase change color filter, showing great potential for large-scale and inexpensive production. The dynamically tunable color filter, described in this paper, could be a promising component in display, CMOS sensor, and solar cell technology.

10.
Nature ; 511(7508): 206-11, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25008527

RESUMO

The development of materials whose refractive index can be optically transformed as desired, such as chalcogenide-based phase-change materials, has revolutionized the media and data storage industries by providing inexpensive, high-speed, portable and reliable platforms able to store vast quantities of data. Phase-change materials switch between two solid states--amorphous and crystalline--in response to a stimulus, such as heat, with an associated change in the physical properties of the material, including optical absorption, electrical conductance and Young's modulus. The initial applications of these materials (particularly the germanium antimony tellurium alloy Ge2Sb2Te5) exploited the reversible change in their optical properties in rewritable optical data storage technologies. More recently, the change in their electrical conductivity has also been extensively studied in the development of non-volatile phase-change memories. Here we show that by combining the optical and electronic property modulation of such materials, display and data visualization applications that go beyond data storage can be created. Using extremely thin phase-change materials and transparent conductors, we demonstrate electrically induced stable colour changes in both reflective and semi-transparent modes. Further, we show how a pixelated approach can be used in displays on both rigid and flexible films. This optoelectronic framework using low-dimensional phase-change materials has many likely applications, such as ultrafast, entirely solid-state displays with nanometre-scale pixels, semi-transparent 'smart' glasses, 'smart' contact lenses and artificial retina devices.

11.
Nano Lett ; 19(10): 7377-7384, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31442062

RESUMO

Chalcogenide glasses as nanoscale thin films have become leading candidates for several optical and photonic technologies, ranging from reflective displays and filters to photonic memories. Current material systems, however, show strong optical absorption which limits their performance efficiencies and complicates device level integration. Herein, we report sputter deposited thin films of GeSe3, which are low loss and in which the flexible nature of the atomic structure results in thermally activated tunability in the refractive index as well as in the film's physical volume. Such changes, which occur beyond a threshold temperature are observed to be accumulative and directed toward a more equilibrium amorphous state of the film, instead of crystallization. Our results provide insight into a new type of configurability that is based on strong coupling in the material's opto-structural properties. The low optical losses in this material system combined with the tunability in the optical properties in the visible and near-infrared have direct application in higher performing optical coatings and in corrective optics.

12.
Opt Express ; 27(17): 24724-24737, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31510357

RESUMO

Integrated phase-change photonic memory devices offer a novel route to non-volatile storage and computing that can be carried out entirely in the optical domain, obviating the necessity for time and energy consuming opto-electrical conversions. Such memory devices generally consist of integrated waveguide structures onto which are fabricated small phase-change memory cells. Switching these cells between their amorphous and crystalline states modifies significantly the optical transmission through the waveguide, so providing memory, and computing, functionality. To carry out such switching, optical pulses are sent down the waveguide, coupling to the phase-change cell, heating it up, and so switching it between states. While great strides have been made in the development of integrated phase-change photonic devices in recent years, there is always a pressing need for faster switching times, lower energy consumption and a smaller device footprint. In this work, therefore, we propose the use of plasmonic enhancement of the light-matter interaction between the propagating waveguide mode and the phase-change cell as a means to faster, smaller and more energy-efficient devices. In particular, we propose a form of plasmonic dimer nanoantenna of significantly sub-micron size that, in simulations, offers significant improvements in switching speeds and energies. Write/erase speeds in the range 2 to 20 ns and write/erase energies in the range 2 to 15 pJ were predicted, representing improvements of one to two orders of magnitude when compared to conventional device architectures.

13.
Nano Lett ; 18(4): 2467-2474, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29510053

RESUMO

Two-dimensional materials are being increasingly studied, particularly for flexible and wearable technologies because of their inherent thickness and flexibility. Crucially, one aspect where our understanding is still limited is on the effect of mechanical strain, not on individual sheets of materials, but when stacked together as heterostructures in devices. In this paper, we demonstrate the use of Kelvin probe microscopy in capturing the influence of uniaxial tensile strain on the band-structures of graphene and WS2 (mono- and multilayered) based heterostructures at high resolution. We report a major advance in strain characterization tools through enabling a single-shot capture of strain defined changes in a heterogeneous system at the nanoscale, overcoming the limitations (materials, resolution, and substrate effects) of existing techniques such as optical spectroscopy. Using this technique, we observe that the work-functions of graphene and WS2 increase as a function of strain, which we attribute to the Fermi level lowering from increased p-doping. We also extract the nature of the interfacial heterojunctions and find that they get strongly modulated from strain. We observe that the strain-enhanced charge transfer with the substrate plays a dominant role, causing the heterostructures to behave differently from two-dimensional materials in their isolated forms.

14.
Nano Lett ; 17(6): 3688-3693, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28481105

RESUMO

Graphene nanogap electrodes have been of recent interest in a variety of fields, ranging from molecular electronics to phase change memories. Several recent reports have highlighted that scaling graphene nanogaps to even smaller sizes is a promising route to more efficient and robust molecular and memory devices. Despite the significant interest, the operating and scaling limits of these electrodes are completely unknown. In this paper, we report on our observations of consistent voltage driven resistance switching in sub-5 nm graphene nanogaps. We find that such electrical switching from an insulating state to a conductive state occurs at very low currents and voltages (0.06 µA and 140 mV), independent of the conditions (room ambient, low temperatures, as well as in vacuum), thus portending potential limits to scaling of functional devices with carbon electrodes. We then associate this phenomenon to the formation and rupture of carbon chains. Using a phase change material in the nanogap as a demonstrator device, fabricated using a self-alignment technique, we show that for gap sizes approaching 1 nm the switching is dominated by such carbon chain formation, creating a fundamental scaling limit for potential devices. These findings have important implications, not only for fundamental science, but also in terms of potential applications.

15.
Opt Express ; 24(12): 13563-73, 2016 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-27410372

RESUMO

Phase-change chalcogenide alloys, such as Ge2Sb2Te5 (GST), have very different optical properties in their amorphous and crystalline phases. The fact that such alloys can be switched, optically or electrically, between such phases rapidly and repeatedly means that they have much potential for applications as tunable photonic devices. Here we incorporate chalcogenide phase-change films into a metal-dielectric-metal metamaterial electromagnetic absorber structure and design absorbers and modulators for operation at technologically important near-infrared wavelengths, specifically 1550 nm. Our design not only exhibits excellent performance (e.g. a modulation depth of ~77% and an extinction ratio of ~20 dB) but also includes a suitable means for protecting the GST layer from environmental oxidation and is well-suited, as confirmed by electro-thermal and phase-transformation simulations, to in situ electrical switching. We also present a systematic study of design optimization, including the effects of expected manufacturing tolerances on device performance and, by means of a sensitivity analysis, identify the most critical design parameters.

16.
Nanotechnology ; 27(8): 085604, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26821123

RESUMO

Growing monolayer MoS2 films that are continuous with large domain sizes by chemical vapor deposition is one of the major challenges in 2D materials research at the moment. Here, we explore how atmospheric pressure CVD can be used to grow centimeter scale continuous films of monolayer MoS2 films directly on Si substrates with an oxide layer whilst also obtaining large domain sizes exceeding 20 µm within the films. This is achieved by orientating the growth substrate in a vertical position to improve the uniformity of precursor feed-stock compared to horizontally orientated growth substrates. This leads to continuous films of monolayer MoS2 over a significantly larger area without the need for low-pressure vacuum systems or volatile precursors. This provides important insights into novel approaches for maximizing domain sizes within MoS2 films, with concomitant large area uniform coverage.

17.
Nano Lett ; 15(4): 2562-7, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25723099

RESUMO

The low mass and high quality factors that nanomechanical resonators exhibit lead to exceptional sensitivity in the frequency domain. This is especially appealing for the design of ultrasensitive force and mass sensors. The sensitivity of a nanomechanical mass and force sensor depends on its mass and quality factor; a low resonator mass and a higher quality factor reduce both the minimum resolvable mass and force. Graphene, a single atomic layer thick membrane is an ideal candidate for nanoelectromechanical resonators due to its extremely low mass and high stiffness. Here, we show that by employing the intrinsic piezoresistivity of graphene to transduce its motion in nanoelectromechanical systems, we approach a force resolution of 16.3 ± 0.8 aN/Hz(1/2) and a minimum detectable mass of 1.41 ± 0.02 zeptograms (10(-21) g) at ambient temperature. Quality factors of the driven response of the order of 10(3) at pressures ∼10(-6) Torr on several devices are also observed. Moreover, we demonstrate this at ambient temperature on chemical-vapor-deposition-grown graphene to allow for scale-up, thus demonstrating its potential for applications requiring exquisite force and mass resolution such as mass spectroscopy and magnetic resonance force microscopy.

18.
Adv Mater ; 36(8): e2310596, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37997459

RESUMO

Photonic integrated circuits (PICs) are revolutionizing the realm of information technology, promising unprecedented speeds and efficiency in data processing and optical communication. However, the nanoscale precision required to fabricate these circuits at scale presents significant challenges, due to the need to maintain consistency across wavelength-selective components, which necessitates individualized adjustments after fabrication. Harnessing spectral alignment by automated silicon ion implantation, in this work scalable and non-volatile photonic computational memories are demonstrated in high-quality resonant devices. Precise spectral trimming of large-scale photonic ensembles from a few picometers to several nanometres is achieved with long-term stability and marginal loss penalty. Based on this approach, spectrally aligned photonic memory and computing systems for general matrix multiplication are demonstrated, enabling wavelength multiplexed integrated architectures at large scales.

19.
Nanotechnology ; 24(40): 405304, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24029752

RESUMO

Techniques to reliably pick-and-place single nanoparticles into functional assemblies are required to incorporate exotic nanoparticles into standard electronic circuits. In this paper we explore the use of electric fields to drive and direct the assembly process, which has the advantage of being able to control the nano-assembly process at the single nanoparticle level. To achieve this, we design an electrostatic gating system, thus enabling a voltage-controllable nanoparticle picking technique. Simulating this system with the nonlinear Poisson-Boltzmann equation, we can successfully characterize the parameters required for single particle placement, the key being single particle selectivity, in effect designing a system that can achieve this controllably. We then present the optimum design parameters required for successful single nanoparticle placement at ambient temperature, an important requirement for nanomanufacturing processes.

20.
Nat Nanotechnol ; 18(9): 1036-1043, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37142710

RESUMO

Cognitive functions such as learning in mammalian brains have been attributed to the presence of neuronal circuits with feed-forward and feedback topologies. Such networks have interactions within and between neurons that provide excitory and inhibitory modulation effects. In neuromorphic computing, neurons that combine and broadcast both excitory and inhibitory signals using one nanoscale device are still an elusive goal. Here we introduce a type-II, two-dimensional heterojunction-based optomemristive neuron, using a stack of MoS2, WS2 and graphene that demonstrates both of these effects via optoelectronic charge-trapping mechanisms. We show that such neurons provide a nonlinear and rectified integration of information, that can be optically broadcast. Such a neuron has applications in machine learning, particularly in winner-take-all networks. We then apply such networks to simulations to establish unsupervised competitive learning for data partitioning, as well as cooperative learning in solving combinatorial optimization problems.


Assuntos
Redes Neurais de Computação , Neurônios , Animais , Retroalimentação , Neurônios/fisiologia , Aprendizado de Máquina , Encéfalo , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA