Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 31(39): 14024-31, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21957263

RESUMO

Emerging data indicate that central neurons participate in diabetic processes by modulating autonomic output from neurons in the dorsal motor nucleus of the vagus (DMV). We tested the hypothesis that synaptic modulation by transient receptor potential vanilloid type 1 (TRPV1) receptors is reduced in the DMV in slices from a murine model of type 1 diabetes. The TRPV1 agonist capsaicin robustly enhanced glutamate release onto DMV neurons by acting at preterminal receptors in slices from intact mice, but failed to do so in slices from diabetic mice. TRPV1 receptor protein expression in the vagal complex was unaltered. Brief insulin preapplication restored TRPV1-dependent modulation of glutamate release in a PKC- and PI3K-dependent manner. The restorative effect of insulin was prevented by brefeldin A, suggesting that insulin induced TRPV1 receptor trafficking to the terminal membrane. Central vagal circuits critical to the autonomic regulation of metabolism undergo insulin-dependent synaptic plasticity involving TRPV1 receptor modulation in diabetic mice after several days of chronic hyperglycemia.


Assuntos
Tronco Encefálico/metabolismo , Diabetes Mellitus Experimental/metabolismo , Rede Nervosa/metabolismo , Plasticidade Neuronal/fisiologia , Canais de Cátion TRPV/fisiologia , Nervo Vago/fisiologia , Animais , Tronco Encefálico/fisiologia , Diabetes Mellitus Experimental/fisiopatologia , Regulação para Baixo/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Insulina/fisiologia , Masculino , Camundongos , Camundongos Obesos , Neurônios Motores/fisiologia , Rede Nervosa/fisiopatologia , Sistema Nervoso Parassimpático/citologia , Sistema Nervoso Parassimpático/fisiologia , Canais de Cátion TRPV/antagonistas & inibidores
2.
J Comp Neurol ; 464(4): 525-39, 2003 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-12900922

RESUMO

Neurons in the rat nucleus tractus solitarius (NTS) possess morphologic characteristics that have been correlated with the type of synaptic information they receive. These features have been described for viscerosensory neurons but not for premotor NTS neurons. The morphologic and synaptic features of neurons in the rat caudal NTS were assessed using whole-cell patch-clamp recordings and biocytin labeling in brainstem slices. Gastric-related premotor NTS neurons were identified for recording after inoculation of the stomach wall with a transneuronal retrograde viral label that reports enhanced green fluorescent protein. Three morphologic groups of NTS neurons were identified based on quantitative aspects of soma area and proximal dendritic arborization, measures that were consistent across slice recordings. The most common type of cell (group I) had relatively small somata and one to three sparsely branching dendrites, whereas the other groups had larger somata and more than three dendrites, which branched predominantly close to (group II) or distant from (group III) the soma. Voltage-clamp recordings revealed spontaneous excitatory and inhibitory postsynaptic currents in all neurons, regardless of morphology. Gastric-related premotor NTS neurons composed two of the three morphologic types (i.e., groups I and II). Compared with unlabeled neurons, these cells were less likely to receive constant-latency synaptic input from the tractus solitarius. These results refute the hypothesis that general patterns of synaptic input to NTS neurons depend on morphology. Gastric premotor neurons comprise a subset of NTS morphologic types, the organization of the viscerosensory input to which has yet to be defined.


Assuntos
Lisina/análogos & derivados , Neurônios/citologia , Neurônios/fisiologia , Núcleo Solitário/citologia , Núcleo Solitário/fisiologia , Sinapses/fisiologia , Animais , Eletrofisiologia , Potenciais Pós-Sinápticos Excitadores , Proteínas de Fluorescência Verde , Herpesvirus Suídeo 1 , Técnicas In Vitro , Indicadores e Reagentes , Proteínas Luminescentes , Masculino , Inibição Neural/fisiologia , Neurônios/virologia , Técnicas de Patch-Clamp , Pseudorraiva , Ratos , Ratos Sprague-Dawley , Estômago/inervação , Estômago/virologia , Fatores de Tempo
3.
Diabetes ; 61(6): 1381-90, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22492526

RESUMO

The paraventricular nucleus (PVN) of the hypothalamus controls the autonomic neural output to the liver, thereby participating in the regulation of hepatic glucose production (HGP); nevertheless, mechanisms controlling the activity of liver-related PVN neurons are not known. Transient receptor potential vanilloid type 1 (TRPV1) is involved in glucose homeostasis and colocalizes with liver-related PVN neurons; however, the functional role of TRPV1 regarding liver-related PVN neurons has to be elucidated. A retrograde viral tracer was used to identify liver-related neurons within the brain-liver circuit in control, type 1 diabetic, and insulin-treated mice. Our data indicate that TRPV1 regulates liver-related PVN neurons. This TRPV1-dependent excitation diminished in type 1 diabetic mice. In vivo and in vitro insulin restored TRPV1 activity in a phosphatidylinositol 3-kinase/protein kinase C-dependent manner and stimulated TRPV1 receptor trafficking to the plasma membrane. There was no difference in total TRPV1 protein expression; however, increased phosphorylation of TRPV1 receptors was observed in type 1 diabetic mice. Our data demonstrate that TRPV1 plays a pivotal role in the regulation of liver-related PVN neurons. Moreover, TRPV1-dependent excitation of liver-related PVN neurons diminishes in type 1 diabetes, thus indicating that the brain-liver autonomic circuitry is altered in type 1 diabetes and may contribute to the autonomic dysfunction of HGP.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Fígado/metabolismo , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Diabetes Mellitus Experimental/genética , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Insulina/farmacologia , Camundongos , Potenciais Pós-Sinápticos em Miniatura/efeitos dos fármacos , Potenciais Pós-Sinápticos em Miniatura/fisiologia , Neurônios/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Técnicas de Patch-Clamp , Fosforilação/efeitos dos fármacos , Canais de Cátion TRPV/genética
4.
Exp Neurol ; 223(2): 529-36, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20144892

RESUMO

Temporal lobe epilepsy (TLE) is a condition characterized by an imbalance between excitation and inhibition in the temporal lobe. Hallmarks of this change are axon sprouting and accompanying synaptic reorganization in the temporal lobe. Synthetic and endogenous cannabinoids have variable therapeutic potential in treating intractable temporal lobe epilepsy, in part because cannabinoid ligands can bind multiple receptor types. This study utilized in vitro electrophysiological methods to examine the effect of transient receptor potential vanilloid type 1 (TRPV1) activation in dentate gyrus granule cells in a murine model of TLE. Capsaicin, a selective TRPV1 agonist had no measurable effect on overall synaptic input to granule cells in control animals, but significantly enhanced spontaneous and miniature EPSC frequency in mice with TLE. Exogenous application of anandamide, an endogenous cannabinoid that acts at both TRPV1 and cannabinoid type 1 receptors (CB1R), also enhanced glutamate release in the presence of a CB1R antagonist. Anandamide reduced the EPSC frequency when TRPV1 were blocked with capsazepine. Western blot analysis of TRPV1 receptor indicated protein expression was significantly greater in the dentate gyrus of mice with TLE compared with control mice. This study indicates that a prominent cannabinoid agonist can increase excitatory circuit activity in the synaptically reorganized dentate gyrus of mice with TLE by activating TRPV1 receptors, and suggests caution in designing anticonvulsant therapy based on modulating the endocannabinoid system.


Assuntos
Giro Denteado/fisiologia , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/fisiopatologia , Transmissão Sináptica/fisiologia , Canais de Cátion TRPV/fisiologia , Animais , Anticonvulsivantes/farmacologia , Ácidos Araquidônicos/farmacologia , Moduladores de Receptores de Canabinoides/farmacologia , Capsaicina/farmacologia , Giro Denteado/efeitos dos fármacos , Modelos Animais de Doenças , Desenho de Fármacos , Endocanabinoides , Epilepsia do Lobo Temporal/induzido quimicamente , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos , Fibras Musgosas Hipocampais/efeitos dos fármacos , Fibras Musgosas Hipocampais/fisiologia , Agonistas Muscarínicos/toxicidade , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Pilocarpina/toxicidade , Alcamidas Poli-Insaturadas/farmacologia , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/fisiologia , Fármacos do Sistema Sensorial/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Canais de Cátion TRPV/agonistas
5.
PLoS One ; 5(5): e10683, 2010 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-20498848

RESUMO

Temporal lobe epilepsy (TLE) is a neurological condition associated with neuron loss, axon sprouting, and hippocampal sclerosis, which results in modified synaptic circuitry. Cannabinoids appear to be anti-convulsive in patients and animal models of TLE, but the mechanisms of this effect are not known. A pilocarpine-induced status epilepticus mouse model of TLE was used to study the effect of cannabinoid agonists on recurrent excitatory circuits of the dentate gyrus using electrophysiological recordings in hippocampal slices isolated from control mice and mice with TLE. Cannabinoid agonists WIN 55,212-2, anandamide (AEA), or 2-arachydonoylglycerol (2-AG) reduced the frequency of spontaneous and tetrodotoxin-resistant excitatory postsynaptic currents (EPSCs) in mice with TLE, but not in controls. WIN 55,212-2 also reduced the frequency of EPSCs evoked by glutamate-photolysis activation of other granule cells in epileptic mice. Secondary population discharges evoked after antidromic electrical stimulation of mossy fibers in the hilus were also attenuated by cannabinoid agonists. Agonist effects were blocked by the cannabinoid type 1 receptor (CB1R) antagonist AM251. No change in glutamate release was observed in slices from mice that did not undergo status epilepticus. Western blot analysis suggested an up-regulation of CB1R in the dentate gyrus of animals with TLE. These findings indicate that activation of CB1R present on nerve terminals can suppress recurrent excitation in the dentate gyrus of mice with TLE. This suggests a mechanism for the anti-convulsive role of cannabinoids aimed at modulating receptors on synaptic terminals expressed de novo after epileptogenesis.


Assuntos
Canabinoides/metabolismo , Giro Denteado/fisiopatologia , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/fisiopatologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Ácidos Araquidônicos/farmacologia , Western Blotting , Canabinoides/agonistas , Giro Denteado/efeitos dos fármacos , Endocanabinoides , Epilepsia do Lobo Temporal/complicações , Epilepsia do Lobo Temporal/patologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Fibras Musgosas Hipocampais/efeitos dos fármacos , Fibras Musgosas Hipocampais/patologia , Fibras Musgosas Hipocampais/fisiopatologia , Fotólise/efeitos dos fármacos , Pilocarpina/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Estado Epiléptico/complicações , Estado Epiléptico/patologia , Estado Epiléptico/fisiopatologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA